常染色体隐性肢带型肌营养不良症 21 (LGMDR21) 是由蛋白质 O-葡萄糖基转移酶 1 (POGLUT1) 的致病变异引起的,该酶负责对 50 种哺乳动物蛋白质(包括 Notch 受体)中发现的特定表皮生长因子 (EGF) 重复序列进行 O-糖基化。先前的患者活检数据表明,Notch 信号传导受损、肌肉干细胞减少和分化加速可能与疾病病因有关。使用患者诱导的多能干细胞 (iPSC)、其校正同种型和对照 iPSC,基因表达谱分析表明 POGLUT1、NOTCH、肌肉发育、细胞外基质 (ECM)、细胞粘附和迁移的失调是相关通路。它们还表现出体外 POGLUT1 酶活性和 NOTCH 信号传导降低以及肌肉生成、增殖、迁移和分化缺陷。此外,体内研究表明植入、肌肉干细胞形成、PAX7 表达和维持显著减少,同时间质中错误定位的 PAX7 + 细胞百分比增加。使用 CRISPR-Cas9 切口酶对患者 iPSC 进行基因校正可挽救主要的体外和体内表型。这些结果证明了 iPSC 和基因校正在疾病建模和表型挽救中的功效,并提供了肌肉干细胞生态位定位、PAX7 表达和细胞迁移作为 LGMDR21 的可能机制参与的证据。
摘要:中国科学院国家空间科学中心是中国空间科学的门户,统筹管理全国科学卫星任务,是中国第一颗人造卫星“东方红一号”的诞生地。在60多年的发展历程中,国家空间科学中心牵头实施了中国第一个科学驱动的航天任务“双星计划”,并陆续实施了暗物质粒子探测器(悟空号)、量子实验卫星(墨子号)、硬X射线调制望远镜(慧马号)、太极一号、空间太阳天文台(夸父号)、爱因斯坦探测器(EP)等一批国家空间科学战略优先项目一、二期科学任务。目前,我国空间科学卫星系列已经基本形成,取得了丰硕的科研成果。未来,中欧联合发射的太阳风磁层电离层链路探测器(SMILE)也将于2025年发射。此外,刚刚发布的《国家中长期空间科学发展规划(2024-2050)》是我国首部国家级规划,确定了五大科学主题。围绕这些主题展开的一系列未来科学任务,将深化人类对宇宙的科学认识。
2024 年 10 月 16 日 执行摘要:在关键的政府和军事行动中,每一秒都至关重要。Space Compass 正在部署一种基于太空的架构,可实现高达 10 Gbps 的数据速率。以这种速度,对太空中关键任务的支持可以发生转变,从而能够在几秒钟内而不是几小时或几天内交付图像和其他数据。本文研究了这种架构的工作原理,并讨论了它将对几个关键用例产生的影响。简介:Space Compass 光学数据中继服务能够加快数据移动速度、改善安全操作并实现比以往更高的容量。Space Compass 是世界知名电信提供商 NTT 与全球最大、最可靠的卫星通信公司之一 Sky Perfect JSAT Group 的合资企业。他们共同成立了 Space Compass,充分利用他们在卫星运营和光通信技术方面长期积累的专业知识,提供世界上第一个集成空间计算网络。空间集成计算网络:Space Compass 利用 JSAT 和 NTT 过去的广泛表现来设计太空中的高容量通信和计算基础设施。我们的光学数据中继服务利用此基础设施将数据从地球静止卫星高速传输到地面。我们的光学方法意味着速度和容量非常高,并且与我们的 GEO 架构相结合,可以缓解现有传统架构的限制。传统架构使用较慢的通信和较少的容量,并且在地面站视线范围内运行,所有这些都限制了性能。
职位:KENPHIA II 卫星医学实验室技术员 地点:现场卫星移动实验室(根据全国各地定义的现场工作区域)。 报告给:KENPHIA II 卫星医学实验室团队负责人 职位数:42 持续时间:6-9 个月 总体职责 接收样本并输入实验室数据管理系统 (LDMS),将样本处理成干血斑 (DBS),并离心全血以获得血浆等分试样以运往中央检测实验室。 为 KENPHIA II 现场样本提供检测服务,即 CD4 检测和 GeneXpert POCT 或 DNA PCR(EID)。 与现场团队联络开展卫星实验室活动,以实施 KENPHIA II 调查的实验室组件。 他/她将根据需要履行各种职责,以成功履行该职位的职能,包括但不限于以下技术活动。 职责
该公司已着手评估和整合卫星星座 (NGSO)、地球观测 (EO) 分析和直接到设备 (D2D) 等新兴技术,使其能够满足对数据密集型应用日益增长的需求,包括宽带互联网服务、视频流和电信解决方案。通过采用新技术,Es'hailSat 旨在大幅扩展其容量和覆盖能力,确保为中东和北非 (MENA) 地区及其他地区的用户提供无缝连接。
Agence gabonaise d't't't'Et d'Aspiales(Ageos),Gabon Agencia Espacial Mexicana(AEM),墨西哥Agenzia Spaziale Italiana(Angkasa),马来西亚Agenzia Agenzia agenzia agenzia spaziale spaziale spaziale Italiana(ASI),ITALY ITALY AUSTAREIAL INTARDERIAL INTARLERELES(BOM)(BOM) IAL技术发展(CDTI),西班牙中国资源卫星数据与应用中心(CRESDA)澳大利亚科学和工业研究委员会(CSIR)南非皇家研究所(CRI),新西兰德意志ZentrumFürluft-luft-luft-luft-luft-und-umund raumfahrt(dlr),欧洲媒体(ESSCCCANCAS),加拿大企业(ESSO) (EWEC)对气象卫星(EUMETSAT)*欧洲航天局(ESA)*地理学和空间技术发展局(GISTDA),泰国地球科学澳大利亚(GA)全球气候观察系统(GCOS)全球地理学部门(GGOS)CIL(ISC)Indial Geosper(IMD) (ISRO)*
日本)、博士小竹秀明先生(日本NICT)狩野久芳 (Hisayoshi Kano) 先生 (日本 NTT) Yoshimi Fujii(日本耕造计划工業株式会社),Yoshimi Fujii 教授(日本耕造计划工業株式会社); Minoru Okada(日本奈良先端科学技术大学院大学)博士Sang-il Ahn 教授(韩国航天航空研究院,韩国) Ji-Hwan Choi(韩国科学技术研究院),教授Sungtek Kahng(韩国仁川国立大学),教授Sooyoung Kim(韩国全北国立大学)先生宋成灿(Sung Chan Song)(韩国韩华系统公司) Do-Kyoung Kim (LIGNex1,韩国)先生Jong-Jin Jang 博士(韩国 KAI) Dong-Pil Chang 博士(韩国 ETRI) Kyoung Youl Park(ADD,韩国),教授Wonjae Shin (韩国高丽大学) 提交至:
摘要 - 地球成像卫星是我们日常生活的关键部分,可以使全球跟踪工业活动。用例涵盖了许多应用程序,从天气预报到数字地图,碳足迹跟踪和植被监测。但是,有局限性;卫星很难制造,维护昂贵,并且发射到轨道上很棘手。因此,卫星必须有效地使用。这提出了一个称为卫星任务计划问题的挑战,可以是计算中的vivetosolveOnlargesCales.ever,近距离算法,例如贪婪的增强学习和优化算法,通常可以提供令人满意的分辨率。本文介绍了一组量子算法来解决误解计划问题,并证明了比迄今为止实施的classical算法的优势。该问题被提出,是因为在包含数千个任务和多个卫星的真实数据集上完成的高优先级任务数量。这项工作表明,通过解决方案链接和聚类,优化和机器学习算法为最佳解决方案提供了最大的潜力。本文特别表明,杂交量子增强的增强剂学习剂可以在高优先级任务上获得98.5%的完成百分比,从而在基线贪婪方法中以75.8%的完成率显着改善。这项工作中提出的结果铺平了在太空行业中支持量子的解决方案的方式,更普遍地是整个工业的未来任务计划问题。
在边缘部署人工智能 (AI) 和计算机视觉 (CV) 算法的挑战性推动了嵌入式计算社区研究异构片上系统 (SoC)。这种新型计算平台提供了接口、处理器和存储的多样性,然而,AI/CV 工作负载的有效分区和映射仍然是一个悬而未决的问题。在此背景下,本文在英特尔的 Movidius Myriad X 上开发了一个混合 AI/CV 系统,这是一个异构视觉处理单元 (VPU),用于初始化和跟踪卫星在太空任务中的姿态。航天工业是研究替代计算平台以遵守机载数据处理的严格限制的社区之一,同时也在努力采用 AI 领域的功能。在算法层面,我们依靠基于 ResNet-50 的 UrsoNet 网络以及自定义经典 CV 管道。为了实现高效加速,我们结合多种并行化和低级优化技术,利用 SoC 的神经计算引擎和 16 个矢量处理器。所提出的单芯片、稳健估计和实时解决方案在 2W 的有限功率范围内为 100 万像素 RGB 图像提供高达 5 FPS 的吞吐量。