Maurizio Scaltriti 博士的研究生涯一直受到一个首要问题的指导:为什么某些肿瘤对特定疗法的反应优于其他肿瘤?治疗耐药性是治疗不同形式癌症的长期挑战。纪念斯隆凯特琳癌症中心 (MSK) 人类肿瘤学和发病机制项目 (HOPP) 首席研究员 Scaltriti 博士说,有些药物在理论上应该对每位患者都有效,但实际上并非如此。他解释说:“许多具有相同基因组异常的患者应该对针对这些靶点起作用的药物有反应。然而,即使科学告诉我们具有这些特征的一组患者应该对给定的疗法敏感,我们也经常看到有些患者敏感,有些患者不敏感。这就引出了一个问题:药物治疗的机制是什么?
标题:ERBB2 扩增或突变型肺癌中 HER2 介导的细胞毒药物内化 标题:抗 HER2 ADC 在肺癌中的抗肿瘤活性 Bob T. Li 1,13#* 、Flavia Michelini 2,3#* 、Sandra Misale 4#* 、Emiliano Cocco 3 、Laura Baldino 2,3 、Yanyan Cai 2,3 、Sophie Shifman 3 、Hai-Yan Tu 1,5 、Mackenzie L. Myers 1 、Chongrui Xu 1,5 、Marissa Mattar 4,6 、Inna Khodos 4,6 、Megan Little 4,6 、Besnik Qeriqi 4,6 、Gregory Weitsman 7 、Clare J. Wilhem 1 、Alshad S. Lalani 8 、Irmina Diala 8 、Rachel A. Freedman 9 、 Nancy U. Lin 9 、 David B. Solit 1,3,11,13 、 Michael F. Berger 2,3,11 、 Paul R. Barber 7,12 、 Tony Ng 7,12 、 Michael Offin 1,13 、 James M. Isbell 10,13 、 David R. Jones 10,13 、 Helena A. Yu 1,13 、 Sheeno Thyparambil 14 、廖伟丽 14 、Anuja Bhalkikar 14 、Fabiola Cecchi 15 、David M. Hyman 1,13 、Jason S. Lewis 13,16,17 、Darren J. Buonocore 2 、Alan L. Ho 1,13 、Vicky Makker 1,13 、Jorge S. Reis-Filho 2,3 , 佩德拉姆Razavi 1,13、Maria E. Arcila 2、Mark G. Kris 1,13、John T. Poirier 1,4、Ronglai Shen 18、Junji Tsurutani 19、Gary A. Ulaner 4,13,14、Elisa de Stanchina 4,6、Neal Rosen 4,20、Charles M. Rudin 1,13 和毛里齐奥·斯卡尔特里蒂 2,3,20* 。 1 美国纽约州纽约市纪念斯隆凯特琳癌症中心医学系 2 美国纽约州纽约市纪念斯隆凯特琳癌症中心病理学系 3 美国纽约州纽约市纪念斯隆凯特琳癌症中心人类肿瘤学和发病机制项目 4 美国纽约州纽约市纪念斯隆凯特琳癌症中心分子药理学项目 5 中国广州广东省人民医院、广东省医学科学院广东省肺癌研究所 6 美国纽约州纽约市纪念斯隆凯特琳癌症中心抗肿瘤评估核心设施 7 英国伦敦国王学院 Richard Dimbleby 癌症研究系 8 美国加利福尼亚州洛杉矶 Wilshire Blvd 10880 Puma Biotechnology 90024 美国波士顿丹娜—法伯癌症研究所肿瘤内科系 10美国纽约州约克 11 美国纽约州纽约市纪念斯隆凯特琳癌症中心分子肿瘤学中心 12 英国伦敦大学学院保罗奥戈曼大楼伦敦大学学院癌症研究所 13 美国纽约州纽约市威尔康奈尔医学院 14 美国马里兰州罗克维尔 mProbe Inc 15 美国马里兰州盖瑟斯堡阿斯利康 16 美国纽约州纽约市纪念斯隆凯特琳癌症中心放射科 17 美国纽约州纽约市纪念斯隆凯特琳癌症中心放射化学和分子成像探针核心 18 美国纽约州纽约市纪念斯隆凯特琳癌症中心流行病学和生物统计学系 19 日本东京昭和大学肿瘤医学系高级癌症转化研究所 20 纽约纪念斯隆凯特琳癌症中心分子治疗中心纽约州约克
对生物机制的理解使得开发第一种靶向疗法成为可能。这些疗法最初针对的是导致疾病或与疾病特别相关的蛋白质。对 ER 在乳腺癌中的作用的理解以及对其阻断机制的识别推动了针对所谓“激素依赖性”乳腺癌(ER 阳性、雌激素受体阳性)的激素疗法的开发。他莫昔芬现在是 ER 阳性乳腺癌的标准治疗方法。它通过竞争性抑制雌二醇与其受体的结合起作用(Jordan,2003 年)。针对特定表位的单克隆抗体也构成了一类非常重要的靶向疗法。它们彻底改变了哮喘等炎症性疾病的治疗(Pelaia 等人,2017 年)。然而,对导致疾病的基因变异的识别为使用靶向疗法提供了主要动力。例如,相互易位t(9; 22),即费城染色体,是慢性粒细胞白血病 (CML) 的标志。因此,t(9;22) 易位最先用于确诊 CML (Heisterkamp 等,1990 年;Rowley,1973 年)。这种易位会产生异常的融合基因 (BCR-ABL)。由此产生的 BCR-ABL 融合蛋白由于其组成性酪氨酸激酶活性而具有致癌特性 (Lugo、Pendergast、Muller 和 Witte,1990 年)。与蛋白激酶催化位点结合的 ATP 竞争性抑制剂的开发导致了一种特异性疗法:伊马替尼或 Gleevec ®,从而彻底改变了 CML 和其他疾病的治疗方式 (Kantarjian 和 Talpaz,2001 年)。同样,致癌 NTRK(神经营养性原肌球蛋白相关激酶)融合基因的鉴定最近导致了特异性抑制剂(larotrectinib 或 Vitrakvi ®、entrectinib 或 Rozlytrek ®)的开发,用于治疗成人和儿童的 NTRK 阳性癌症(Cocco、Scaltriti & Drilon,2018 年)。在肿瘤学中,针对复发性点突变的特异性抑制剂也得到了广泛开发(Martini、Vecchione、Siena、Tejpar & Bardelli,2012 年;Skoulidis & Heymach,2019 年)。在某些情况下,会产生很少或根本不产生蛋白质。胰岛素就是这种情况,胰岛素依赖型糖尿病(I 型)患者缺乏这种酶。患者接受胰岛素疗法治疗,通过施用替代蛋白质来忠实重现胰岛素生理分泌的效果。 1982 年,第一种人类胰岛素蛋白上市,开创了一种新模式:可以修改激素蛋白的序列,使其药代动力学特性与患者的生理需求相匹配(McCall & Farhy,2013 年)。除了这些“蛋白质特异性”疗法外,还开发了针对 DNA(脱氧核糖核酸)的方法。至于蛋白质,最初的治疗尝试是基于对 DNA 的整体改变,例如通过使用烷化剂。这些药物会诱导非特异性共价键的产生,从而产生 DNA 加合物。它们会破坏复制和转录,这解释了它们在癌症治疗中的用途(Noll、Mason 和 Miller,2006 年)。插入也是小平面分子与 DNA 的一种特殊结合模式。它们会改变 DNA 的构象,破坏 DNA 和 RNA 聚合酶的活性(Binaschi、Zunino 和 Capranico,1995 年)。靶向 DNA 的分子并不局限于肿瘤学应用。例如,甲氨蝶呤是一种在细胞周期 S 期抑制核酸合成的抗代谢物,它已经取代了传统上使用的银盐用于治疗类风湿性关节炎(Browning、Rice、Lee 和 Baker,1947 年)。除了这些以非特异性方式与 DNA 相互作用的分子之外,人们还设想了针对性策略,以纠正导致疾病的有害基因。这种方法被称为基因疗法(Kaufmann、Büning、Galy、Schambach 和 Grez,2013 年)。一个非常有前景的例子(正在申请上市许可 [MA])涉及治疗 β 地中海贫血症,这是一种血红蛋白遗传性疾病。在这里,患者的干细胞被分离并被改造以替换有害基因,这样它们就可以产生正常的血红蛋白。然后将改造后的细胞注射回患者体内(Cavazzana-Calvo 等人,2010 年;Thompson 等人,2018 年)。这些令人惊叹的方法可以用于治疗许多疾病,包括糖尿病,尽管它们的实施非常复杂。最后,长期以来被认为是简单中间分子的 mRNA 最近已成为感兴趣的治疗靶点。 mRNA 是精细转录和转录后调控的位点,与许多疾病有关。因此,近年来 RNA 分子也受到关注,因为这些分子与蛋白质和 DNA 一样,是开发靶向疗法的候选分子(Disney、Dwyer 和 Childs-Dis-ney,2018 年)。第一种反义寡核苷酸 (ASO) 就是在这种背景下出现的。ASO 是单链合成 RNA 或 DNA 分子,平均长度为 12 至 25 个核苷酸。它们的序列与其靶标的序列互补,以确保特异性。因此,ASO 的序列由其靶标的序列决定。此外,这些分子可以定位在细胞质和细胞核中,从而可以到达细胞质和/或细胞核靶标(参见 Potaczek、Garn、Unger 和 Renz,2016 年的综述)。 ASO 经过化学改性,免受核酸酶的作用(否则会降解它们),并允许它们穿过质膜而无需矢量化。根据这些变化,ASO 可分为三代(如下所述)(图 1)。ASO 的化学性质很重要,因为它决定了其作用方式(降解目标 RNA 或掩盖位点而不降解)。因此,ASO 可以进行广泛的调节,