一位训练有素的放射科医生确认了这些图像的真实性,并没有发现任何标记错误的图像。因此,没有丢弃任何图像。为了在现实临床场景中最准确地反映模型的性能,图像没有以任何方式增强。随后创建了两个数据集:一个包含 160 幅图像的训练数据集和一个包含 40 幅图像的测试数据集。两个数据集中的出血性和非出血性 CT 扫描数量相等。值得注意的是,该数据集包含从万维网上搜索中获取的图像,因此由于源机器、患者状况、扫描时间、辐射剂量等的差异而引入了高度的异质性。这个问题因数据集较小而变得更加严重,因此这里获得的结果可能只是对所采用技术的实际潜力的保守估计 [17,18]。
摘要 - 阿尔茨海默氏病(AD)是痴呆症最为流行的形式,比前列腺癌和乳腺癌杀死更多的人。结构磁共振成像(SMRI)广泛用于分析进行性脑部加重及其在区分AD方面的临床实用性。即使尚不存在有效治愈,早期发现对于减轻症状恶化的速度也是至关重要的。因此,本工作的目的是提出端到端3D卷积长的短期记忆(ConvlSTM)的基于全分辨率全分辨率全脑SMRI扫描的AD的框架。提出的框架应用于属于OASIS和ADNI数据库的427个全分辨率全分辨率全分辨率SMRI扫描,以提供较少的数据集特定于方法。的结果表明,我们的框架在区分AD的框架与认知上的Normal(CN)患者方面表现良好,达到86%的分类精度,敏感性为96%,F1评分为88%,AUC为88%,AUC的AUC为93%。测试是在可扩展的GPU云服务上进行的,并可以公开使用以保证可重复性。由于所提出的框架在没有AD的领域特定知识以及计算成本的过程(例如分割)的情况下表现良好,因此可以使用全脑SMRI扫描作为输入数据将其应用于其他精神疾病。索引术语 - Alzheimer病,深度学习,诊断,端到端方法,可扩展的GPU云,结构磁共振成像,3D卷积长的短期记忆
脑部扫描的解剖分割与诊断和神经放射学研究高度相关。由于软组织对比度强,传统上分割是在 T 1 加权 MRI 扫描上进行的。在这项工作中,我们报告了一项基于学习的自动化脑部分割的比较研究,该研究针对 MRI 和计算机断层扫描 (CT) 扫描的各种其他对比度进行,并研究了这些成像模式中包含的解剖软组织信息。总共包含 853 个 MRI/CT 脑部扫描的大型数据库使我们能够训练卷积神经网络 (CNN) 进行分割。我们在四种不同的成像模式和 27 个解剖子结构上对 CNN 性能进行了基准测试。对于每种模式,我们基于一个通用架构训练一个单独的 CNN。我们发现平均 Dice 得分分别为 86.7 ± 4.1 %(T 1 加权 MRI)、81.9 ± 6.7 %(液体衰减反转恢复 MRI)、80.8 ± 6.6 %(扩散加权 MRI)和 80.7 ± 8.2%(CT)。性能是相对于使用广泛采用的 FreeSurfer 软件包获得的标签进行评估的。分割管道使用 dropout 采样来识别损坏的输入扫描或低质量分割。在图形处理单元上,对超过 200 万人素的 3D 体积进行完整分割需要不到 1 秒的处理时间。
尽管磁共振成像 (MRI) 等诊断成像技术的进步使人们对阿尔茨海默病 (AD) 的诊断和治疗有了更深入的了解,但医疗专业人员仍然需要分析图像,这是一个耗时且容易出错的过程。借助神经网络模型,可以更准确、更有效地做出诊断。在本研究中,我们比较了三种著名的基于 CNN 的算法(AlexNet、Faster R-CNN 和 YOLOv4)的性能,以确定哪一种算法在对 AD 患者的脑部 MRI 扫描进行多类分类时最准确。所使用的数据集来自 Kaggle,包含 6400 个训练和测试 MRI 图像,分为四个类别(非痴呆、非常轻度痴呆、轻度痴呆和中度痴呆)。中度痴呆类别的代表性极低。为了获得更准确的结果,通过数据增强将图像添加到该类别中。实验是使用 Google Colab 的 Tesla P100 GPU 进行的。迁移学习应用于所有三个预训练模型,并根据各自的参数调整数据集。增强后,AlexNet 具有最高的 mAP(平均准确率),100% 的时间检测到感兴趣的对象,而 YOLOv4 和 Faster R-CNN 的 mAP 分别为 84% 和 99%。然而,YOLOv4 在混淆矩阵上表现最佳,尤其是对于 ModerateDemented 图像。正如我们的实验所揭示的,像 YOLOv4 这样的单阶段检测器比像 Faster R-CNN 这样的两阶段检测器更快、更准确。我们的研究成功实现了这些模型,并为医学图像诊断做出了宝贵贡献,为未来的研究和开发开辟了道路。
1 伊朗德黑兰基础科学研究所 (IPM) 计算机科学学院 2 伊朗德黑兰沙希德贝赫什提大学医学科学与技术研究所 3 伊朗德黑兰沙希德贝赫什提大学物理系伊本西纳多学科实验室 4 伊朗德黑兰沙希德贝赫什提大学物理系 5 伊朗德黑兰伊朗科学技术研究组织 (IROST) 电气工程与信息技术系 6 伊朗德黑兰沙希德贝赫什提大学计算机科学与工程系 7 伊朗德黑兰沙希德贝赫什提医科与健康服务大学国家结核病和肺部疾病研究所 (NRITLD) 气管疾病研究中心 8 伊朗德黑兰沙希德贝赫什提医科与健康服务大学国家结核病和肺部疾病研究所 (NRITLD) 慢性呼吸道疾病研究中心9 伊朗德黑兰沙希德贝赫什提医科大学国家结核病和肺部疾病研究所 (NRITLD) 病毒学研究中心 10 伊朗设拉子医科大学放射学系医学成像研究中心
图1冠状组织学切片(Kluver Barrera染色)和Ex Vivo 0.2×0.2×0.2×0.2 mm 3 MRI在海马头(A,B),身体(C,D)和尾部(E,G)的同一主题中。组织学部分中的黑线划分了子场之间的细胞结构边界,该专家以全0.5×0.5μm2分辨率分析数字组织学部分的专家追踪。绿色箭头指向辐射分子(SRLM)层,在MRI中显得不高。请注意,Cornu氨和下调的宽度取决于SLRM的位置,SLRM的位置是分割子场(黄线)的关键地标。此外,在离体MRI上,可以看到牙槽(外部低位带,红色箭头),这有助于划定海马的外边界,尤其是其数字(白色星号)。ca,Cornu Ammonis,sub,subiculum(包括前和副副总统),DG,Dentate Gyrus
放射自显影。该方法提供了局部脑功能图,这是因为区域脑葡萄糖代谢与神经元(主要是突触)活动偶联。1979 年发表的开创性论文将 Sokoloff 方法扩展到使用 PET 和 18 F-FDG 进行人脑成像。20 世纪 80 年代初,人们开始研究神经精神疾病中的区域脑葡萄糖代谢和局部神经元活动。对阿尔茨海默病 (AD) 的扫描显示颞顶联合皮层代谢减慢;这被认为是该病的典型特征。当时,脑 PET 图像的定量分析使用感兴趣区域,比较患者和对照组脑区放射性示踪剂的值。随后,开发了更自动化的方法,如统计参数映射 ( 3 ),通过将 PET 图像映射到立体定向脑图谱上来检测局部变化。这些方法有助于逐像素地比较 PET 图像组,这种方法广泛用于分析区域 15 O-水图像
1 伊朗德黑兰基础科学研究所 (IPM) 计算机科学学院 2 伊朗德黑兰基础科学研究所 (IPM) 脑工程研究中心 3 伊朗德黑兰沙希德贝赫什提大学物理系伊本西纳多学科实验室 4 伊朗德黑兰沙希德贝赫什提大学物理系 5 伊朗德黑兰伊朗科学技术研究组织 (IROST) 电气工程与信息技术系 6 伊朗德黑兰沙希德贝赫什提大学计算机科学与工程系 7 伊朗德黑兰沙希德贝赫什提医科与健康服务大学国家结核病和肺部疾病研究所 (NRITLD) 气管疾病研究中心 8 伊朗德黑兰沙希德贝赫什提医科与健康服务大学国家结核病和肺部疾病研究所 (NRITLD) 慢性呼吸道疾病研究中心伊朗 9 伊朗德黑兰沙希德贝赫什提医科大学国家结核病和肺部疾病研究所 (NRITLD) 病毒学研究中心 10 伊朗设拉子医科大学放射学系医学成像研究中心
2 pkalavathi.gri@gmail.com 摘要 — 颅骨剥离是从 MR 脑图像中分割脑部分的过程。它是许多神经图像研究中的重要图像处理步骤。在本文中,我们提出了一种基于 2D 区域增长的用于人体头部扫描磁共振图像 (MRI) 的新型颅骨剥离方法。这是一种从 T1、T2 和 PD 加权 MR 图像中分割脑部分的全自动方法。所提出的方法包括两个主要过程。首先,我们提取中间切片中的脑部分,然后提取剩余切片中的脑。在该方法中,首先处理脑图像的二进制形式以找到粗糙的脑部。然后通过使用 2D 区域增长方法检测粗糙脑部中的细小脑区。在粗糙脑部内部定义一个圆圈来选择区域增长的种子点。我们利用相邻切片的几何相似性来提取剩余切片中的脑部分。所提出的方法可在 T1、T2 和 PD 加权图像中准确提取脑部。实验结果表明,该方法比BET和BSE方法更准确地提取脑部部分。关键词——颅骨剥离,区域生长,磁共振图像(MRI),分割