2量子黑洞3 2.1地平线的几何形状。。。。。。。。。。。。。。。。。。。。3 2.2共形物质:能量动力学。。。。。。。。。。。。。。6 2.3鹰辐射。。。。。。。。。。。。。。。。。。。。。。。。8 2.4用于霍金辐射的水库。。。。。。。。。。。。。。。。9 2.5黑洞热力学。。。。。。。。。。。。。。。。。。。10 2.6 JT重力。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.7黑洞在JT重力中。。。。。。。。。。。。。。。。。。。。12 2.8 Schwarzian描述。。。。。。。。。。。。。。。。。。。13 2.9 Schwarzian的对称起源。。。。。。。。。。。。。。。15 2.10半经典近似。。。。。。。。。。。。。。。。16 2.11 JT中的蒸发。。。。。。。。。。。。。。。。。。。。。。。。17212地平线。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 div>
在宇宙学中,直到90年代初期,具有挑战性的问题是找到高度非线性并在本质上耦合的进化方程的分析解决方案。结果,很难从宇宙学模型中找到任何宇宙学推断。但是,自90年代末[1]以来,当动态系统方法已应用于宇宙学领域时,情况就会发生变化。动态系统分析是一种非常强大的数学工具,可从演化方程提供信息,而无需任何参考初始条件或任何中间时刻的任何特定行为[2]。对于一般的宇宙学场景,可能会发生无限的进化,但其渐近行为尤其是在后期的渐近行为仅限于几个不同的类别。如果可以将宇宙进化方程转换为自主形式,则可以将这些类别识别为稳定的关键点。因此,通过分析此类临界点,可以推断宇宙的较晚时间演变,而不会引起任何分析解决方案或对初始条件的歧义。到目前为止,宇宙学场景的大多数动态分析都限于背景级别,即自主系统的形成,临界点的确定以及相关宇宙学参数的估计,即密度参数,状态参数等方程。目前的工作涉及在当前加速阶段的背景下的标准宇宙学模型,即具有指数潜力的典型的深色能量标量场模型。vi。使用适当的选择变量,将演化方程转换为离散的自主系统,并使用中心歧管理论分析了临界点,并且已经用Schwarzian衍生品提出了稳定性分析。手稿的组织如下:在第二部分中,我们讨论了FLRW时空下的典型场景的背景。在第三节中,我们在本节中确定了与宇宙学模型基本方程相对应的自主系统。从离散动态系统分析的角度显示,第四节显示了所有涉及参数的各种关键点的稳定性分析。我们在第五节中介绍了全球动力学分析和宇宙学的含义。最后,在SEC中提出了简短的讨论和重要的总结。
热场复偶(TFD)是反德西特/共形场论(AdS/CFT)对应关系中的一种特殊状态[1],它将 D + 1 维反德西特空间中的假定量子引力理论与维度 D 边界上的共形场论联系起来。黑洞发射热辐射[2],实际上在外部留下一个热密度矩阵。以色列[3]指出,通过考虑热场复偶可以重现可观测量的计算,类似于史瓦西几何的最大延伸。后来,马尔达西那[4]在 AdS/CFT 的背景下推测,边界 CFT 的 TFD 应该对应于 AdS 中永恒的双面黑洞。存在于相差一维的理论之间的对偶性这种想法通常被称为全息论。为了检验这种二元性,考虑可穿越虫洞现象是很有趣的,这是 AdS/CFT 的一个惊人预测。从引力的角度来看,黑洞两侧的边界显然不能因果通信。虽然有一个空间虫洞连接两个外部区域,但人们无法穿越它而不落入黑洞奇点。如果爱丽丝和鲍勃在对立面,他们就无法相遇,除非他们一起跳进黑洞。Gao、Jafferis 和 Wall [ 22 ] 的最新进展表明,两种边界理论的特定耦合会产生负能量冲击,使 TFD 状态下的虫洞可穿越。换句话说,鲍勃可以与爱丽丝团聚而不会被吸入黑洞。作为此协议以及 AdS/CFT 中许多其他思想实验的起点,人们假设可以访问 TFD 状态。一个很有前途的用于探测 AdS/CFT 的量子力学系统是 Sachdev-Ye-Kitaev (SYK) 模型 [5,6]。例如,它在低能下表现出共形对称性,其动力学由 Schwarz 作用量支配 [7]。相同的作用量支配着一种被称为 Jackiw-Teitelboim 引力的二维量子引力理论 [8,9]。此外,它已被证明会在低温下使混沌界限饱和,这也是黑洞最大扰乱的标志 [10,11]。在参考文献 [12] 中,作者在近 AdS2 中构造了永恒可穿越虫洞解,并表明两个耦合 SYK 模型的低能极限具有相同的作用量。一个关键结果是,他们表明 SYK 模型的 TFD 可以很好地通过具有小相互作用的双边哈密顿量的基态来近似。在本研究中,我们考虑了在噪声中尺度量子 (NISQ) [ 13 ] 设备上准备 SYK 模型的 TFD 的状态的任务。参考文献 [ 14 ] 中考虑了准备任意理论的 TFD 的更一般任务。同样,该策略是构建一个哈密顿量,其基态编码了 TFD 结构。虽然方程中的哈密顿量文献 [ 12 ] 中的 (3.21) 可以看作文献 [ 14 ] 中构造的略微特殊版本,我们将在本文中使用它,因为它相对简单。这两种方法都考虑使用辅助浴将系统绝热冷却到基态。在这里,我们采用变分法,从参数可调的量子电路假设开始。这样就不需要辅助系统了。类似的方法曾用于构造 Ising 模型的 TFD [ 15 ]。简而言之