物联网和大数据市场预计将呈指数级增长。2020 年,物联网连接设备数量约为 87 亿台,预计到 2030 年这一数字将增至 254 亿台。我们日益互联的世界将需要覆盖提供物联网通信的传感器。然而,目前地球表面约 80% 的区域尚未提供任何连接,这对农业、能源、物流、海事和许多其他行业来说是一个重大挑战,它们需要监控位于偏远或恶劣环境地区的资产。此外,随着地面攻击的增加,公共、工业或商业系统被黑客入侵的例子也呈指数级增长,造成数十亿美元的损失和其他危险。因此,确保生成、交换和处理的数据准确且可信变得越来越重要。这需要为每个传感器提供可信的数字身份,并启用具有强大硬件和软件安全功能的生态系统
摘要:跟踪飞机与降落伞在空投试验中起着至关重要的作用。研究降落伞的打开状态和飞行轨迹是十分必要的。如何高效准确地获取降落伞的形变数据和轨迹数据,越来越多的学者开始研究。目前,实际的数据采集主要由实验人员手持高清高速摄像机对降落伞进行跟踪拍摄,获得降落伞在空投过程中的图像序列。但这些方法无法获得降落伞的飞行轨迹,且易受人为因素的干扰。本文设计了一种智能转台伺服系统TuSeSy,可自动跟踪空投试验中的飞机与降落伞。具体来说,TuSeSy根据实际拍摄图像与跟踪算法推断图像之间的差异生成控制命令(从而真正跟踪目标)。此外,我们提出了一种有效的基于图像帧差异和光流的多目标跟踪切换算法,实现了空投试验中从飞机到降落伞的实时切换。为了评估TuSeSy的性能,我们进行了大量实验;实验结果表明,TuSeSy不仅解决了错误目标跟踪的问题,而且还降低了计算开销。此外,与其他跟踪切换方法相比,多目标跟踪切换算法具有更高的计算效率和可靠性,确保了转台伺服系统的实际应用。
摘要:空投试验中飞机与降落伞的跟踪至关重要,需要研究降落伞的打开状态和飞行轨迹,如何高效准确地获取降落伞的形变数据和轨迹数据成为越来越多学者的研究方向。目前实际的数据采集主要由实验人员手持高清高速摄像机对降落伞进行跟踪拍摄,获得空投过程中降落伞的图像序列,但这些方法无法获得降落伞的运动轨迹,且易受人为因素的干扰。本文设计了TuSeSy智能转台伺服系统,可自动跟踪空投试验中的飞机与降落伞,具体而言,TuSeSy根据实际拍摄图像与跟踪算法推断图像的差异生成控制指令(从而真正跟踪目标)。此外,我们提出了一种基于图像帧差和光流的有效多目标跟踪切换算法,实现了空投试验中从飞机到降落伞的实时切换。为了评估TuSeSy的性能,我们进行了大量的实验;实验结果表明,TuSeSy不仅解决了错误目标跟踪的问题,而且还降低了计算开销。此外,与其他跟踪切换方法相比,多目标跟踪切换算法具有更高的计算效率和可靠性,确保了转台伺服系统的实际应用。