I.简介物联网(IoT)涵盖了包括智能城市,运输,医疗保健和能源管理在内的各种应用程序,可显着增强用户体验和服务[6] [10]。预测表明,物联网市场将见证指数增长,到2024年,投资达到43万亿美元,超过300亿链接的连接设备,产生了大量的数据,需要有效的管理和共享[10]。物联网设备之间的有效数据共享增强了上下文理解,实现了协调的行动和智能决策[3] [5]。但是,诸如缺乏信任,数据篡改,未经授权的访问和隐私涉及的挑战阻碍了有效的数据共享,从而导致数据孤岛妨碍IOT开发[7] [8]。将区块链技术集成到物联网数据共享框架中提供了防篡改和透明的结构,可确保数据完整性和真实性,同时促进IoT生态系统参与者的信任[2] [6]。已经提出了基于区块链的方法来解决工业物联网系统中的数据安全和隐私问题,从而提高了物联网网络的可靠性[4] [18]。本项目提出了一个基于边缘的区块链安全数据共享方案(EB-SDSS),该方案结合了边缘计算和区块链技术,以解决潜伏期,隐私和性能挑战,从而在IOT环境中实现安全有效的数据共享[1] [14] [15]。
Magnis Energy Technologies Ltd(“Magnis”或“公司”)(ASX:MNS;OTC:MNSEF;FSE:U1P)指的是其 2024 年 12 月 31 日的 ASX 公告,并很高兴提供此股东更新。公司和担保贷款人 McEvoy Street (Alexandria) Pty Ltd 已同意将担保债务项下应付的本金金额从 675.2 万美元增加到 726.2 万美元。现有担保债务协议下的所有其他条款和条件保持不变。关于 Magnis Magnis Energy Technologies Ltd (ASX: MNS; OTC: MNSEF; FSE: U1P) 是一家垂直整合的锂离子电池技术和材料公司,位于锂离子电池供应链中。该公司的愿景是实现、支持和加速对绿色能源转型至关重要的电动汽车和可再生能源存储的大规模采用。本公告已获得 Magnis Energy Technologies Ltd(ACN 115 111 763)董事会授权发布。
boot procedure • On Chip OTP based root keys and flash-based code signing keys • Three independent OTP memories, 4 Kbytes each • On Chip Physically Unclonable Function (PUF), TRNG • Multiple message digest support: MD5, SHA-1, SHA-2 (224-bit, 256-bit), AES-CMAC, XCBC-MAC, CBC-MAC • Anti-rollback for firmware基于图像版本和安全版本号(SVN)的二进制文件•HROT(信任的硬件根)•使用OpenSSL的加密卸载•加密闪光灯•证明和AC-Rot和SPDM的AC-ROT•安全固件更新•安全固定•安全配置•安全制造
由合伙人 Kevin Wheeler 领导的 atham & Watkins 团队最近在美国国际贸易委员会审理的两起侵犯专利权案件中为总部位于加利福尼亚的 Netgear 和 Serendia 公司赢得了胜利。在 Netgear 一案中,Latham 代表这家总部位于圣何塞的无线网络技术巨头提起诉讼,此前该公司发现竞争对手、中国的 TP-Link 在其产品中使用了 Netgear 的知识产权,窃取了 Netgear 的市场份额。该案于去年 1 月在美国国际贸易委员会开庭审理,审理内容包括对源代码进行高度技术性的审查,并有 8 名专家证人出庭作证,案件还被翻译成中文。美国国际贸易委员会行政法官发布了初步裁决,认定所有被控产品均侵犯了 Netgear 的两项专利,专利有效,TP-Link 的双频无线路由器应被禁止进口。在奥兰治县医疗美容技术公司 Serendia 的案件中,Latham 向 ITC 提起诉讼,以保护其合作伙伴 ViOL Co. Ltd. 和 Benev Co. Inc. 免受竞争对手侵犯其专利微针设备的侵害。ITC 于 2023 年底举行了审判,Serendia 声称侵犯了四项专利。上个月,一名行政法官裁定这些公司违反了 1930 年的《关税法》并侵犯了专利。下面,Wheeler 在接受《The Recorder》的问答时讨论了这些案件。
通常,密码管理器(也称为钥匙链)应用程序将将其密码数据库存储在磁盘上,并由强键链密码保护。在使用时,它可能会在内存中存储数据库的“解锁”表示,从而可以为每个所需域提供密码。而不是实施完整的独立密码管理器应用程序,而是为此项目负责核心库。因此,您无需实现与密码管理器进行交互的交互式前端,也不需要实际写入磁盘的内容。相反,您将通过提供功能来序列化并将数据结构序列化到字符串表示形式来模拟这些功能,从而可以很容易地通过将这些表示形式写入磁盘来完成完整的密码管理器应用程序。
摘要:将联合学习确定为旨在使用私人数据集培训不同客户模型的最有效的协作学习方法之一。是私人的,我们的意思是,客户的数据集从未公开,因为它们用于本地培训客户的模型。然后,中央服务器负责汇总不同型号的权重。中央服务器通常是一个诚实而有趣的实体,可能有兴趣通过使用模型反转或会员推论来收集有关客户数据集的信息。在本文中,我们讨论了提供安全联合学习框架的不同加密选项。我们调查了差异隐私,同型加密和多方计算(MPC)的使用,同时考虑了不同的威胁模型。在我们的同态加密方法中,我们将使用Paillier Cryptosystem的优化版本获得的结果与使用BFV和CKK获得的结果进行了比较。至于MPC技术,在各种安全假设下测试了不同的一般协议。总体而言,我们发现他的性能更好,对于较低的带宽使用情况。
•vcstate.notauthenticated:这是没有主动身份验证的默认状态。在此状态下,AuthKey无效。在POR和激活后达到此状态。•VCSTATE.PARTALLATELATEDICATICATICATED:在此状态下,正在进行身份验证。A30期望第二部分。这意味着任何先前的主动身份验证已经丢失。•vcstate.authenticatedaes:通过成功执行以AuthenticateEv2first或AuthenticateEv2nonFirst启动的对称身份验证协议来达到主动身份验证。EV2安全消息(如第6.3.6节中定义)处于活动状态。 最后一个身份验证的目标键被记住为authkey。 可以根据这些关键访问权限,是否可以授予对后续命令的权利。 •VCSTATE.AuthenticatiCatedEcc:通过成功执行使用IseralAuthenticate启动的不对称相互验证协议(CLA 0x00,INS 0x86),实现了一个主动身份验证,以SIGMA-I协议为目标)。 也在这里,基于对称的AES EV2安全消息(如第6.3.6节中定义)是有效的。 该状态的访问权限取决于在身份验证期间颁发的目标carootkey和/或读者证书,请参见第6.4.2节和第6.4.3节。EV2安全消息(如第6.3.6节中定义)处于活动状态。最后一个身份验证的目标键被记住为authkey。可以根据这些关键访问权限,是否可以授予对后续命令的权利。•VCSTATE.AuthenticatiCatedEcc:通过成功执行使用IseralAuthenticate启动的不对称相互验证协议(CLA 0x00,INS 0x86),实现了一个主动身份验证,以SIGMA-I协议为目标)。也在这里,基于对称的AES EV2安全消息(如第6.3.6节中定义)是有效的。该状态的访问权限取决于在身份验证期间颁发的目标carootkey和/或读者证书,请参见第6.4.2节和第6.4.3节。
该报告重点介绍了GNSS技术的最新进步和未来趋势,包括采用新频率,多频功能以及接收器设计中的创新,以提高性能和安全性。欧盟GNSS以服务或诸如Galileo高精度服务(HAS)和开放服务导航消息身份验证(OSNMA)之类的功能领先。此外,该报告还解决了人们对欺骗和干扰威胁的越来越关注,展示了诸如身份验证,弹性接收器以及与多个传感器的杂交等解决方案。Secure Satcom系统中的开发报告的SEACCOM部分概述了安全SATCOM中的关键趋势,包括通过数字化,AI,云环境和与5G网络集成的性能提高了性能,以及NGSO星座的部署以减少延迟。它强调了对恶意行为者风险驱动的SATCOM传输对安全性增强的需求,重点是机密性,完整性和可用性。此外,从以硬件为中心到以软件为导向的设计的转变使用户终端能够利用多个星座和频率,改善通信链接可用性。关注报告的关注与编辑的特别节目结束,探讨了GNSS,安全SATCOM以及相关的地球观察之间的潜在和现有协同作用。此类协同作用的示例包括通过SATCOM传输地球观察数据,使用GNSS来操作移动NGSO终端,将GNSS和安全的SATCOM合并在运输和紧急管理中,支持哥白尼遥控传感器,并启用高级准确的GNS在偏远地区在偏远地区进行SATCOM的位置。
Thales的数字身份产品和解决方案增强了数十亿人和拥有数字身份的事物。Thales OneWelcome身份和访问管理产品组合使组织能够为客户,业务合作伙伴和员工建造无摩擦,可信赖和安全的数字旅程。OneWelcome身份平台提供了各种功能,从身份验证,单登录,无密码和多因素身份验证到欺诈管理,自适应访问,动态授权以及最高保证级别的同意和偏好管理。超过30,000个组织信任我们的IAM和数据安全需求,使他们能够为用户提供安全的数字服务。
摘要 当所选协议缺乏损失容忍度时,信号丢失会对量子密码学的安全性构成重大威胁。在量子位置验证 (QPV) 协议中,即使相对较小的丢失率也会危及安全性。因此,目标是找到在实际可实现的丢失率下仍能保持安全的协议。在这项工作中,我们修改了 QPV 协议的通常结构,并证明这种修改使验证者和证明者之间潜在的高传输丢失对于一类协议而言与安全性无关,该类协议包括受 BB84 协议 ( QPV f BB84 ) 启发的实用候选协议。这种修改涉及光子存在检测、证明者的短暂时间延迟以及在继续之前进行游戏的承诺,将总体丢失率降低到仅证明者的实验室。经过调整的协议 c- QPV f BB84 随后成为一种具有强大安全性保证的实用 QPV 协议,即使面对使用自适应策略的攻击者也是如此。由于验证者和证明者之间的丢失率主要由他们之间的距离决定,因此可以在更长的距离上实现安全的 QPV。我们还展示了所需光子存在检测的可能实现,使 c-QPV f BB84 成为解决 QPV 中所有主要实际问题的协议。最后,我们讨论了实验方面并给出了参数估计。