自旋大厅和Rashba-Edelstein效应是由于自旋 - 轨道耦合而引起的旋转转换现象(SOC),随着快速管理和低消费的途径的途径越来越引起人们的兴趣,因此在旋转设备中迅速管理和处理大量数据的储存和处理。具有大SOC的材料,例如重金属(HMS),以进行大型旋转转换。最近,已经提出了将石墨烯(GR)与大型SOC层接近的使用,这是一种有效且可调的自旋传输通道。在这里,我们通过热自旋测量值探索了CO和HM之间的石墨烯单层及其界面自旋传输性能的作用。已经在蓝宝石晶体上生长的外观IR(111)/CO(111)结构上制备了GR/HM(PT和TA)堆栈,其中自旋检测器(即顶部HM)和自旋注射器(即CO,CO)都在受控条件和清洁和清洁和锋利的互动中生长出来。我们发现GR单层从底部CO层保留了注入HM的自旋电流。通过检测旋转seebeck和界面贡献之和的净减少,这是由于GR的存在而独立于所使用的HM的自旋霍尔角符号而观察到的。
摘要:有机材料对热电应用,尤其是在柔性设备中具有巨大的预测,因为它们具有柔软和轻巧的性质。该领域的最新进展是通过有机热电材料和更有效的设备设计的增强来推动的。本评论提供了这些进步的全面概述。首先详细介绍了高效有机热电材料的演化和性能优化,并强调化学和物理修饰。该评论还深入研究了灵活设备的创新设计策略,涵盖了新的结构方法,性能建模和热管理技术。此外,它检查了3D打印和薄膜沉积等先进的制造过程。为了强调全球趋势和挑战,该评论整合了顶级研究机构的发现。评论项目在材料开发,表征技术和设备优化方面的未来突破,尤其是专注于PEDOT:PSS和PANI等材料的进步。它强调了提高电导率和Seebeck系数的策略。值得注意的是,创新的设备设计具有显着提高的能量转换效率,而数值模拟提高了输出电压和功率密度。此外,诸如3D打印和解决方案处理之类的尖端制造技术还促进了复杂结构的可扩展生产。总而言之,这些集体进步推动了用于多种应用的高性能,具有成本效益和可持续的热电技术,包括可穿戴电子产品,能源收集和热管理。
其中,S 为塞贝克系数,σ 为电导率,κ 为热导率,T 为绝对温度。ZT 用于比较热导率不同材料的热电性能。而功率因数(PF = S2σ)则比较热导率相近材料的热电效率。[1–7] 目前,Bi 2 Te 3 、PbTe 和 SiGe 等无机化合物占据热电市场主导地位。[8–12] 然而,这些化合物的使用存在若干缺点,例如毒性、原材料稀缺、成本高和不可持续。因此,人们对寻找可替代的可持续、高度丰富、低成本和无毒的材料有着浓厚的兴趣。有机半导体(例如:导电聚合物、碳质材料和纳米复合材料)由于其优越的性能(例如可用性、低热导率、易于化学改性和大规模生产)而提供了一种新兴的替代方案。通过掺杂 PEDOT 来提高导电聚合物的热电性能,可使 ZT 值达到 0.2–0.4。[13] 碳纳米结构,特别是碳纳米管 (CNT) 在通过以下方法制备的多层系统中表现出优异的热电行为
这项关于金属有机骨架 (MOF) HUKUST-1 薄膜的研究重点是比较未掺杂的原始状态和通过 TCNQ 渗透 MOF 孔结构进行掺杂的情况。我们已经确定了 HKUST-1 薄膜的温度相关电荷传输 p 型电导率。此外,还详细表征了电导率和电流-电压特性。由于最常见的 MOF 形式,即块状 MOF 粉末,不易进行电气特性研究,因此在本研究中,电气测量是在致密、紧凑的表面锚定金属有机骨架 (SURMOF) 薄膜上进行的。这些单片、明确定义和 (001) 优先取向的 MOF 薄膜是使用准液相外延 (LPE) 在特殊功能化的硅或硼硅酸盐玻璃基板上生长的。在原始 SURMOF 薄膜上,研究了在这些多孔薄膜中加载 TCNQ 的影响。在高度定向的 SURMOF 薄膜中观察到正电荷载流子传导和强烈的电导各向异性,并通过塞贝克系数测量得到证实。范德堡四点霍尔测量为此类多孔和混合有机-无机晶体材料的电行为提供了重要的见解,这使得它们在微电子和光电子设备以及热电应用中具有潜在应用价值。
通过烧结机械合金化的 Fe 和 Si 粉末与 Mn、Co、Al、P 作为 p 型和 n 型掺杂剂,制备了添加了 B 4 C 纳米粒子的 β-FeSi 2 。随后将固结样品在 1123 K 下退火 36 ks。退火后烧结物的 XRD 分析证实了从 α 和 ε 几乎完全转变为热电 β-FeSi 2 相。样品表面的 SEM 观察结果与衍射曲线相符。TEM 观察结果显示 B 4 C 纳米粒子均匀分布在材料中,没有可见的聚集体,并确定了晶粒尺寸参数 d 2 < 500 nm。所有掺杂剂都有助于降低热导率和塞贝克系数,其中 Co 对提高与参考 FeSi 2 相关的电导率的影响最大。结合添加 Co 作为掺杂剂和 B 4 C 纳米粒子作为声子散射体,Fe 0.97 Co 0.03 Si 2 化合物的无量纲性能系数 ZT 在 773 K 时达到 7.6 × 10 –2。将所检测的烧结物与之前制造的相同化学计量但不添加 B 4 C 纳米粒子的烧结物的热电性能进行比较,发现它们总体上具有负面影响。关键词:二硅化铁、纳米粒子、热电材料
基于方平面过渡金属配合物(如 MO 4 、M(NH) 4 和 MS 4 ,M = 金属)的 2D 共轭配位聚合物 (cCP) 是一类新兴的(半)导电材料,在超级电容器、催化和热电应用中具有重要意义。寻找高性能镍氮 (Ni-N) 基 cCP 薄膜的合成方法是一项长期挑战。本文开发了一种通用的、动态控制的表面合成方法,可产生高导电性的 Ni-N 基 cCP 薄膜,并研究了热电性能与分子结构的关系及其与周围大气相互作用的依赖性。在所研究的四种具有不同配体尺寸的 cCP 中,六氨基苯和六氨基三菲基薄膜在这种 Ni-N 基 cCP 系列中表现出创纪录的电导率(100-200 S cm –1 ),比之前报道的高一个数量级,并且其热电功率因数在报道的 2D cCP 中最高,可达 10 μ W m –1 K –2。研究了这些薄膜的传输物理,结果表明,根据主客体与氧/水的相互作用,可以很大程度上调节多数载流子类型和塞贝克系数的值。高电导率可能反映了(小)有序畴与支持无序金属传输的晶界之间的良好互连性。
我们在现象学上制定并在实验上观察到通过人工倾斜多层(ATML)中的热电流重新定位增强了绝热的热电转换。通过交替堆叠具有不同导电性的两种材料,并相对于纵向温度梯度旋转其多层结构,诱导导热性张量中的非分子分量。这种非对角线热传导(ODTC)在绝热条件下产生有限的横向温度梯度,并在绝热条件下产生了seebeck效应诱导的热电器,该温度是由异热横向热电器上置于由外diagonal驱动的热量热电器上的。在这项研究中,我们计算和观察包括热电CO 2 MNGA Heusler合金和BI 2-A SB A TE 3化合物的ATML中的二维温度分布以及所得的横向热电器。通过将倾斜角从0°更改为90°,横向温度梯度显然出现在中间角度,横向热电图在CO 2 MNGA/BI 0.2 MNGA/BI 0.2 SB 1.8 TE 3 te 3 te 3 te的ATML中以45°的倾斜度为45°的ATML,均来自45°的贡献。这种从ODTC得出的混合动作导致横向热电转化率最大降低效率的显着差异从等热极限的3.1%到绝热极限的8.1%。
类似大脑的智力将人类引入了感知互联网(IOP)的时代,在这里,许多传感节点生成的大量数据对传输带宽和计算硬件构成了显着的挑战。最近提出的近传感器计算体系结构是一种有效的解决方案,可减少数据处理延迟和能耗。但是,具有多功能近传感器图像处理功能的创新硬件的紧迫需求。在这项工作中,开发了基于莫特的材料(二氧化钒)基于近红外的光热探测器,它们具有电极依赖性和可调的超线性光响应(指数𝜶> 33),具有超导MIA的偏置。These devices demonstrate an opto-thermo-electro-coupled phase transition, resulting in a large photocurrent on/offratio ( > 10 5 ), high responsivity ( ≈ 500 A W − 1 ), and well detectivity ( ≈ 3.9 × 10 12 Jones), all while maintaining rapid response speeds ( 𝝉 r = 2 μ s and 𝝉 d = 5 μ s) under the bias of 1 V. This发现电极依赖性的超线性响应是由通过Seebeck系数的极性确定的电子掺杂效应产生的。此外,该工作还展示了强度选择性的近传感器处理和夜视模式重组,即使有嘈杂的输入。这项工作为开发具有医疗图像预处理,灵活的电子设备和智能边缘传感的近传感器设备的方式铺平了道路。
通过烧结机械合金化的 Fe 和 Si 粉末与 Mn、Co、Al、P 作为 p 型和 n 型掺杂剂,制备了添加了 B 4 C 纳米粒子的 β-FeSi 2 。随后将固结样品在 1123 K 下退火 36 ks。退火后烧结物的 XRD 分析证实了从 α 和 ε 几乎完全转变为热电 β-FeSi 2 相。样品表面的 SEM 观察结果与衍射曲线相符。TEM 观察结果显示 B 4 C 纳米粒子均匀分布在材料中,没有可见的聚集体,并确定了晶粒尺寸参数 d 2 < 500 nm。所有掺杂剂都有助于降低热导率和塞贝克系数,其中 Co 对提高与参考 FeSi 2 相关的电导率的影响最大。结合添加 Co 作为掺杂剂和 B 4 C 纳米粒子作为声子散射体,Fe 0.97 Co 0.03 Si 2 化合物的无量纲性能系数 ZT 在 773 K 时达到 7.6 × 10 –2。将所检测的烧结物与之前制造的相同化学计量但不添加 B 4 C 纳米粒子的烧结物的热电性能进行比较,发现它们总体上具有负面影响。关键词:二硅化铁、纳米粒子、热电材料
摘要:热电材料早已被证明能有效地将热能转化为电能,反之亦然。自从半导体被用于热电领域以来,人们做了大量工作来提高它们的效率。它们的热电物理参数(塞贝克系数、电导率和热导率)之间的相互关系需要特殊的调整,才能最大限度地提高它们的性能。在开发热电性能的研究中,已经报道了各种方法,包括掺杂和合金化、纳米结构和纳米复合。在不同类型的热电材料中,层状硫族化物材料是具有独特性能的独特材料。它们具有低的自热导率,并且它们的层状结构使它们易于修改以提高其热电性能。在这篇综述中,提供了热电概念的基本知识以及提高性能系数的挑战。文中简要讨论了不同组层状硫属化物热电材料的结构和热电性能。文中还介绍了文献中用于提高其性能的不同方法以及该领域的最新进展。文中重点介绍了石墨烯作为层状硫属化物材料基质的有前途的纳米添加剂,并展示了其对提高其性能系数的影响。