芝麻的含种子胶囊在收获时破碎。这种野性的特征使该作物不适合机械化收获,并通过限制无法获得低成本劳动的国家的耕种来限制其商业潜力。因此,为了开发可持续的芝麻农业的机械化品种,囊囊破碎特征的基本遗传基础非常重要。在本研究中,我们产生了芝麻F 2种群,这些种群源自胶囊粉碎品种(Muganli-57)和非惊人突变体(PI 599446)之间的交叉,该杂种用于基于基于双重数量的限制性站点 - 相关的DNA测序的遗传图。所得的高密度遗传图包含782个单核苷酸多态性(SNP),并跨度为697.3厘米,平均标记间隔为0.89 cm。基于参考基因组,将囊破碎特性映射到SNP标记物S8_5062843(78.9厘米)附近LG8(染色体8)附近。为了揭示可能控制破碎特征的基因,检查了标记区域(S8_5062843),并确定了包括六个CDSS的候选基因。注释表明,该基因编码具有440个氨基酸的蛋白质,与转录抑制剂KAN1共享约99%的同源性。与胶囊粉碎等位基因相比,SNP在S8_5062843的空气区域中发生变化和改变的剪接,导致mRNA中的移码突变,从而导致突变父母中该基因的功能丧失,从而导致在不受破坏的囊囊和叶片卷曲中。使用基因组数据,开发了Indel和CAPS标记,以区分标记辅助选择研究中的破碎和非惊人的胶囊基因型。在研究中获得的结果在育种计划中可能是有益的,以提高破碎的性状并提高芝麻的生产力。
抽象破碎的颗粒注射(SPI)已被用作ITER的基线减轻缓解系统,因为从SPI的辐射有效载荷穿透到DIII-D等离子体中比使用大量气体注入(MGI)方法优越。由于ITER等离子体的能量含量和当前实验的能量含量存在很大差异,因此需要针对当前实验的可靠3D MHD建模来投射到ITER等离子体上。为了支持这些需求,通过将SPI注射到两个具有截然不同的能量含量和基座高度的放电中,研究了DIII-D等离子体中SPI片段渗透的深度。400托尔 - 纯ne碎片颗粒被注入0.2 MJ L模式放电和2 MJ超级H模式放电中。结果表明,在DIII-D中,SPI片段深入到低能等离子体中。随着血浆能量含量的增加,SPI碎片渗透降低,一些放电表现出局限于血浆外部区域的渗透。注入的SPI片段也分布在约20厘米的距离上,从而导致一些片段在热淬灭结束后或之后到达。