出版物在同行评审期刊P147中的国际出版物。M. P. Abrahams,M。Oudich,Y。Revalor,N。Vukadinovic和M. B. Assouar。 “用于宽带声吸收的混合超薄跨表面”。 应用物理信124,151702(2024)。 P146。 T. Guo,M。B. Assouar,B。Vincent&A。Merkel«边缘状态在非Hermitian复合声音Su Schrieffer Heeger链中»应用物理学杂志135,043102(2024)P145。 W. ding,T。Chen,D。Yu,C。Chen,R。Zhang,J。Zhu,M。B. Assouar“低频频段的手性语音晶体中的同骨性”国际机械科学杂志261,108678(2024)。 P144。 L. Cao,S。Wan,Y。Zeng,Y。Y. X. Fan,Y。Zhu,N。Li,C。Weng&M。B. Assouar“用于加密信息传输的声学元数据”的物理评论应用于20,044048(2023)P142。 M. Jiang,Y-F。 Wang,M。B. Assouar&Y-S。 Wang“基于界面阻抗理论的弹性剪切 - 摩托波波的无散射调制”物理评论应用于20,054020(2023)P141。 W. ding,T。Chen,C。Chen,D。Chronopoulos,M。B. Assouar,Y。Wen,J。Zhu“用类似于Thomson散射的手性声音晶体开放的带盖的描述”新的Physics Physics 25,103001(2023)P140。 X-R。李,J-J。 冯,b-c。 ping,y。 太阳,D-J。 Wu&M。B. Assouar“具有可调型孔隙轨道角动量光谱的周期性声音涡流”的物理评论应用于20,034008(2023)P139。M. P. Abrahams,M。Oudich,Y。Revalor,N。Vukadinovic和M. B. Assouar。“用于宽带声吸收的混合超薄跨表面”。应用物理信124,151702(2024)。P146。T. Guo,M。B. Assouar,B。Vincent&A。Merkel«边缘状态在非Hermitian复合声音Su Schrieffer Heeger链中»应用物理学杂志135,043102(2024)P145。W. ding,T。Chen,D。Yu,C。Chen,R。Zhang,J。Zhu,M。B. Assouar“低频频段的手性语音晶体中的同骨性”国际机械科学杂志261,108678(2024)。P144。L. Cao,S。Wan,Y。Zeng,Y。Y.X.Fan,Y。Zhu,N。Li,C。Weng&M。B. Assouar“用于加密信息传输的声学元数据”的物理评论应用于20,044048(2023)P142。M. Jiang,Y-F。 Wang,M。B. Assouar&Y-S。 Wang“基于界面阻抗理论的弹性剪切 - 摩托波波的无散射调制”物理评论应用于20,054020(2023)P141。 W. ding,T。Chen,C。Chen,D。Chronopoulos,M。B. Assouar,Y。Wen,J。Zhu“用类似于Thomson散射的手性声音晶体开放的带盖的描述”新的Physics Physics 25,103001(2023)P140。 X-R。李,J-J。 冯,b-c。 ping,y。 太阳,D-J。 Wu&M。B. Assouar“具有可调型孔隙轨道角动量光谱的周期性声音涡流”的物理评论应用于20,034008(2023)P139。M. Jiang,Y-F。 Wang,M。B. Assouar&Y-S。 Wang“基于界面阻抗理论的弹性剪切 - 摩托波波的无散射调制”物理评论应用于20,054020(2023)P141。W. ding,T。Chen,C。Chen,D。Chronopoulos,M。B. Assouar,Y。Wen,J。Zhu“用类似于Thomson散射的手性声音晶体开放的带盖的描述”新的Physics Physics 25,103001(2023)P140。X-R。李,J-J。冯,b-c。 ping,y。太阳,D-J。Wu&M。B. Assouar“具有可调型孔隙轨道角动量光谱的周期性声音涡流”的物理评论应用于20,034008(2023)P139。Y. z-l。 Xu,D-F。王,y-f。史,Z-H。 Qian,M。B. Assouar,K-C。 Chuang“利用Aperiodic弹性跨表面的任意波前调制”国际机械科学杂志255,108460(2023)P137。 X. fan,Y。Zhu,Z。Su,X。Huang,Y。Kang,H。Zhang,W。Kan&M。B. Assouar«横向粒子«横向粒子捕获使用有限的贝塞尔束,基于声学上的底膜”Y.z-l。 Xu,D-F。王,y-f。史,Z-H。 Qian,M。B. Assouar,K-C。 Chuang“利用Aperiodic弹性跨表面的任意波前调制”国际机械科学杂志255,108460(2023)P137。X.fan,Y。Zhu,Z。Su,X。Huang,Y。Kang,H。Zhang,W。Kan&M。B. Assouar«横向粒子«横向粒子捕获使用有限的贝塞尔束,基于声学上的底膜”
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。
