导流本身并不能控制侵蚀或去除径流中的沉积物;它通过将径流引导至侵蚀控制装置(例如沉积物收集器)或将径流引导出易侵蚀区域来防止侵蚀。临时导流不应对相邻物业产生不利影响,必须符合当地洪泛区管理法规,并且不应在坡度超过 10% 的区域使用。临时土堤的优点包括能够处理来自大型支流区域的水流。一旦稳定,导流所需的维护相对较少。此外,它们的安装成本相对较低,因为施工所需的土壤材料可能在现场可用,并且可以在设备在现场时作为初始平整操作的一部分进行施工。
摘要 - 多个现场机器人的协作对于大规模环境的导航和映射是必需的。在穿越时,考虑到每个机器人性质的遍历性估算对于确保机器人的安全并确保其性能至关重要。即使在结构化的环境中,不考虑地形信息的行驶也可能导致平台严重损坏,例如由于陡峭的斜坡或由于突然的高度变化而导致的下降。为了应对这一挑战,我们提出了Diter ++,多机器人,多主题和多模式数据集,包括地面信息。使用向前的RGB摄像头和面向接地的RGB-D相机,热相机,两种类型的激光镜头,IMU,GPS和机器人运动传感器获得数据集。数据集和补充材料可在https://sites.google.com/view/diter-plusplus/上找到。
地形分类在各个领域之间都是关键的,尤其是机器人技术,自动驾驶汽车和军事行动,在这种情况下,有效的导航依赖于了解各种景观。利用传感器数据,相机数据和声学信息,地形分类使机器能够辨别地形特征对于知情决策至关重要。本研究的重点是利用深度学习技术来准确地对地形进行分类,并在军事应用和决策中的潜在应用。本文深入研究地形分类方法,利用传输学习模型和视觉变压器通过预处理技术增强。通过利用深度学习算法和传感器数据分析,这些模型区分了地形特征,例如斜坡,植被和障碍,增强了自主系统的导航和情境意识。
我们报告了使用 RHIC 上的 STAR 探测器在√ s NN = 3 GeV 处进行的 Au+Au 碰撞中已识别强子 (π ± 、K ± 、K 0 S 、p、φ 和 Λ ) 的 v 1 和 v 2 结果,以及在√ s NN = 27 和 54.4 GeV 处进行的π ± 、K ± 、p 和¯ p 的 v 2 结果。在高能 Au+Au 碰撞中,人们发现 v 2 的值全为正值,并且组分夸克数 (NCQ) 标度成立。另一方面,在 3 GeV 处进行的碰撞的结果显示,所有强子的中快速度 v 2 均为负,并且不存在 NCQ 标度。此外,发现所有强子的中快速度 v 1 斜率均为正值。此外,通过重子平均场势的计算,可以重现 3 GeV 处 v 2 为负、v 1 为正的斜率特征。这些结果表明,在 3 GeV Au+Au 碰撞中,介质以重子相互作用为特征。
• 是的,现有植物可以与被替换的植物基本相似, • 替换树木必须小于 12 英寸,并且与被替换的植物大小和种类相同,或者直径小于 20 英尺,高度小于 20 英尺。 • 替换植物的面积必须小于 1,000 平方英尺,且占总面积的 20%。 • “基本相似”是指新植物具有与现有植物相似的特征,并且达到了原始的种植目的: • 无需许可证或设计审查(高度、叶子、花朵、用水)(隐私、阴凉、视觉趣味) 位于前院的植物。
2。该项目区域的主要森林是潮湿的落叶林。项目区域的印象是所有三种森林的印象。山坡上的常绿森林和沙质河岸都由二翼粉,Artocarpus,Amoora,Amoora,Elaeocarpus,Syzygium和Eugenia等物种主导。两种潮湿的落叶森林将大部分植被构成潮湿的落叶林和咸森林。用落叶和常绿的植物散布竹子和拐杖森林是Tripura植被的特殊性。草原和沼泽也存在,尤其是在平原上。草本植物,灌木和树木,例如白化菌,巴灵顿,拉格斯特罗血症和麦卡兰加在特里普拉拉的沼泽中繁荣发展。特里普拉(Tripura)目前有41座保留森林以及45个拟议的保留森林。社区被允许居住并访问这些村庄的资源。
考古特征或历史街区;x. 对任何已知埋葬地点的确认;xi. 对现场任何洪泛区、资源保护区、湿地、陡坡、溃坝淹没区的确认;xii. 停车场,包括所需停车场和拟议停车位的列表。xiii. 一份表格,其中包含对地块覆盖率和不透水表面率的计算。2. 拟议开发项目半英里范围内所有主要交叉路口的标识和距离;3. 整个地块的边界,包括路线和距离;4. 主题地块内任何现有或拟议的地块线、地役权或通行权;5. 主题地块和所有相邻财产的当前分区和主要用途;6. 本章第 6 条所述的任何重叠分区边界的图形描述; 7. 所有现有和拟议的建筑物、构筑物、附属构筑物(包括室外照明、围栏、自行车架、墙壁或树篱、垃圾箱)、标志、景观美化和缓冲区、雨水管理设施和其他改进设施的大致位置、大致尺寸、高度、楼层数和退距的图形描述;8. 所有水体、美国地质调查局常年溪流、洪泛区、资源保护区、流域、湿地、溃坝淹没区和陡坡的边界的图形描述;9. 一份概括性的景观规划,其中显示现有植被、拟议的清理范围,并指明根据本章第 5 条第 5 款的景观美化和缓冲场要求将安装的植被的位置和类型,以及任何其他拟议的屏障、缓冲场或景观美化的大致位置和材料描述; 10. 现有和拟议的停车和装卸区以及任何其他不透水表面(如车道、街道(及名称)、人行道、自行车道或多用途小道以及运动场地)的位置和尺寸; 11. 所有出入口的位置和描述,包括所有拟议的地块间连接; 12. 拟议开发项目在平面图上显示的每一段道路上产生的预计每日车辆出行次数;
在所有情况下,聚合物熔体的剪切粘度均随给定剪切速率下的压力呈指数增加。图的截距表明,在每个剪切速率下,粘度随压力的变化呈系统性变化。图的斜率在 2000C 时介于 0.004 和 0.010 s 之间,在 180°C 时介于 0.005 和 0.011 s 之间。实验结果表明,与大气压相比,在 70 MPa 的压力下,聚苯乙烯的粘度增加到 200-300o/~。当外推到 125 MPa 时,这与已发表的研究结果非常吻合。结果表明,在 200°C 下,剪切速率为 500-1000 Sl,结果的可重复性在 1.:36% 以内(置信度为 95%);在 180°C 下,常见剪切速率为 1000 Sl,结果的可重复性在 1.:20% 以内(置信度为 95%)。
上行用于 PCNSL 与非 PCNSL,下行用于 GBM 与转移分化)。总体而言,TIC 的信号变化越剧烈,即造影剂到达和冲刷期间的陡峭斜率,贡献分数就越高。对于 GBM 尤其如此,因为这些时间点与其他两种肿瘤类型的差异更大(图 3B 中黑色显示的平均 TIC)。对于 PCNSL 和转移,信号的最后部分也被认为很重要,这是可以预料的,因为这些情况下信号幅度总体较高。重要的是,在 TIC 信号上应用 1D CNN 可以分析信号随时间变化的局部变化。在这方面,仅考虑特定时间点的信号幅度(例如 PSR)或派生测量值(如 rCBV)的方法可能会忽略