独脚金内酯是一类植物激素,在植物发育、应激反应和与根际(微生物)生物的相互作用中发挥各种功能。虽然它们对营养发育的影响已被充分研究,但人们对其在生殖中的作用知之甚少。我们研究了基因和化学改造独脚金内酯水平对番茄 (Solanum lycopersicum L.) 开花时间和强度的影响,以及这种影响背后的分子机制。结果表明,无论是内源的还是外源的,地上部独脚金内酯水平都与开花时间呈反比,与花朵数量和叶片中成花素编码基因 SINGLE FLOWER TRUSS (SFT) 的转录水平呈正相关。转录本定量结合代谢物分析表明,独脚金内酯通过诱导叶片中 microRNA319 - LANCEOLATE 模块的激活来促进番茄开花。这反过来又降低了赤霉素含量并增加了 SFT 的转录。用独脚金内酯处理后,顶端分生组织中会诱导出几种其他花标记和发育进程的形态解剖特征,从而影响花的转变,更明显地影响花的发育。因此,独脚金内酯通过诱导花转变前后的 SFT 来促进分生组织的成熟和花的发育,而它们的作用在表达 miR319 抗性 LANCEOLATE 的植物中被阻断。我们的研究将独脚金内酯置于模型作物物种的开花调控网络的背景下。
摘要:番茄果实在贮藏期间极易受到主要病原菌灰葡萄孢(B. cinerea)的侵染。最近的研究表明,自噬在植物防御生物和非生物胁迫中至关重要。自噬相关基因5(ATG5)在自噬体的完成和成熟中起关键作用,并被灰葡萄孢菌快速诱导,但ATG5在番茄采后果实抗灰葡萄孢菌中的潜在机制尚不清楚。为了阐明SlATG5在番茄果实抗灰葡萄孢菌中的作用,本研究采用CRISPR/Cas9介导的SlATG5敲除技术。结果表明,slatg5突变体对灰葡萄孢菌的感染更加敏感,病害症状更加严重,抗病酶几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等活性降低。此外,研究还观察到接种灰葡萄孢菌后,slatg5突变体中水杨酸(SA)信号相关基因SlPR1、SlEDS1、SlPAD4、SlNPR1的相对表达量高于WT,而茉莉酸(JA)信号相关基因SlLoxD和SlMYC2的相对表达量低于WT。这些结果表明,SlATG5 通过抑制 SA 信号通路和激活 JA 信号通路正向调控番茄果实对灰霉病菌的抗性反应。
番茄 (Solanum lycopersicum L.) 嫁接主要用于防止土传病原体的危害和非生物胁迫的负面影响,不过使用高活力砧木也可以提高产量和果实品质。在低养分投入农业的背景下,将优良品种嫁接到具有更高氮利用效率 (NUE) 的砧木上可支持直接的产量最大化策略。在本研究中,我们评估了使用过量表达拟南芥 (AtCDF3) 或番茄 (SlCDF3) CDF3 基因的植物作为砧木来提高低氮投入下嫁接接穗的产量,此前有报道称这些基因可提高番茄的 NUE。我们发现 AtCDF3 基因可诱导更多的糖和氨基酸产生,从而使生物量和果实产量在充足和有限的氮供应下都更高。相反,SlCDF3 基因没有发现积极影响。激素分析表明,赤霉素 (GA 4 )、生长素和细胞分裂素 (tZ) 可能参与 AtCDF3 对 N 的反应。这两个基因引发的不同反应可能至少部分与 AtCDF3 转录本通过韧皮部到枝条的移动性有关。在该嫁接组合的叶片中,我们持续观察到转录因子靶基因(如谷氨酰胺合酶 2 (SlGS2) 和 GA 氧化酶 3 (SlGA3ox))的表达较高,这些基因分别参与氨基酸和赤霉素的生物合成。总之,我们的研究结果进一步深入了解了 CDF3 基因的作用方式及其在嫁接方法中的生物技术潜力。
合成转录因子有望成为阐明基因表达与表型之间关系的工具,因为它允许对基因表达进行可调改变,而无需对所研究的基因座进行基因组改变。然而,植物转化需要数年时间、高成本和技术技能,限制了它们的使用。在这项工作中,我们开发了一种名为 VipariNama (ViN) 的技术,其中基于烟草脆裂病毒的载体用于快速部署基于 Cas9 的合成转录因子并在植物体内重新编程基因表达。我们证明 ViN 载体可以在数周内在本氏烟、拟南芥 (Arabidopsis thaliana) 和番茄 (Solanum lycopersicum) 中系统地、持续地激活或抑制多个基因。通过探索包括 RNA 支架、病毒载体集合和病毒工程在内的策略,我们描述了如何提高调控的灵活性和有效性。我们还展示了这种转录重编程如何对代谢表型产生可预测的变化,例如本氏烟草中的赤霉素生物合成和拟南芥中的花青素积累,以及发育表型,例如本氏烟草、拟南芥和番茄中的植物大小。这些结果证明了如何使用基于 ViN 载体的赤霉素信号不同方面的重编程在几周内设计一系列植物物种的植物大小。总之,ViN 将产生表型的时间从一年多缩短到几周,为合成转录因子支持的假设检验和作物工程提供了一种有吸引力的转基因替代方案。
摘要:马铃薯 ( Solanum tuberosum L.) 是继水稻和小麦之后的第三大重要粮食作物。其块茎富含以淀粉形式存在的膳食碳水化合物,具有多种工业应用。淀粉由直链淀粉和支链淀粉两种多糖组成,它们的比例决定了不同的特性和功能。支链淀粉含量较高的马铃薯品种具有多种食品加工和工业应用。利用农杆菌介导的转化技术,我们将成簇的规律间隔短回文重复序列和 CRISPR 相关蛋白 9 (CRISPR/Cas9) 试剂递送到马铃薯 (品种 Yukon Gold) 细胞中,以破坏颗粒结合淀粉合酶 ( gbssI ) 基因,目的是消除淀粉的直链淀粉成分。块茎的卢戈氏碘染色表明,在一些编辑事件中直链淀粉减少或完全消除。高氯酸和酶法进一步证实了这些结果。一个事件 (T2-7) 显示所有四个 gbss 等位基因均发生突变,块茎中的直链淀粉被完全消除。使用快速粘度分析仪 (RVA) 测定了来自六个不同敲除事件的块茎淀粉的粘度曲线,这些值反映了支链淀粉/直链淀粉的比例。后续研究将重点关注从事件中消除 CRISPR 成分,并评估具有各种直链淀粉/支链淀粉比例的克隆在食品加工和其他工业应用中的潜力。
随着果树作物品种的驯化和改良,果实大小也发生了显著的进化。在番茄 (Solanum lycopersicum) 中,CLAVATA-WUSCHEL 信号通路基因的自然发生顺式调控突变导致果实大小显著增加,产生增大的分生组织,从而使花长出额外的器官,果实也更大。在这项工作中,通过结合测序定位和 CRISPR/Cas9 基因组编辑方法,我们分离出了一种调控花分生组织活性的 AP2/ERF 转录因子——过多花器官 (ENO)。因此,ENO 基因突变会导致植物因花分生组织增大而产出更大的多室果实。遗传分析表明,eno 与 LOCULE NUMBER(编码 SlWUS )和 FASCIATED(编码 SlCLV3 )基因座的突变表现出协同效应,这两个基因座是栽培番茄驯化过程中果实大小进化的关键因素。我们的研究结果表明,eno 突变会以花特异性的方式导致 SlWUS 表达域的大幅扩增。体外结合结果表明,ENO 能够与 SlWUS 启动子区内的 GGC-box 顺式调控元件相互作用,表明 ENO 直接调控 SlWUS 表达域以维持花干细胞稳态。此外,对 ENO 基因座自然等位基因变异的研究证明,ENO 启动子中的顺式调控突变在驯化过程中受到了正向选择的靶向,为现代番茄果腔数量和果实大小的大幅增加奠定了基础。
气候变化将对主食(主要或孤儿)作物的产量和营养质量产生负面影响。此外,气候现象(频率、强度)的不确定性使得加快开发适应新条件的品种至关重要(Owino 等人,2022 年)。GWAS(全基因组关联研究)和 GS(基因组选择)是研究标记-性状关联并减少育种时间和成本的有效方法。然而,这些方法的效率受到遗传力和遗传结构的影响,而且它们并不总是完全成功。因此,需要新的方法来补充这些方法并在更短的时间内实现目标。高通量技术的快速发展为开发新的植物育种替代方案提供了机会。例如,越来越多的证据表明组学数据提高了基因组预测的性能。此外,将基因组和功能组学数据与遗传和表型信息相结合可以发现负责关键农学表型的基因和途径。上述方法产生的大量数据主要通过机器学习和深度学习等新兴分支与表型相关联。该学科可以处理数据的维度和复杂性,将生物学知识和组学数据转化为精确设计的植物育种(尽管这项任务并不总是能够实时解决)。本研究主题中提出的工作涵盖了应对气候变化带来的挑战的广泛解决方案,我们相信它们将对该领域的研究人员有所帮助。栽培马铃薯(Solanum tuberosum)对干旱的敏感性对种植者构成了重大挑战,尤其是在气候变化和干旱事件发生频率不断增加的背景下。Fofana 等人评估了一组 384 个乙基
近年来CRISPR - CAS9系统的开发使真核基因组编辑,特别是用于反向遗传学的基因敲除,这是一个简单有效的任务。该系统通过与之基础对的编程单个指定RNA(SGRNA)有关,将其引导到基因组目标位点,随后导致特定于位点特定的修改。然而,真核基因组中的许多基因家族表现出部分重叠的功能,因此,一个基因的敲除可能被另一个基因的功能隐藏。在这种情况下,CRISPR – Cas9系统的特异性降低,这可能会导致与SGRNA不相同的基因组位点的修改,可以同时敲除多个同源基因的同时敲除。我们介绍了Crispys,这是一种用于SGRNA最佳设计的算法,该算法可能针对给定基因家族的多个成员。crispys首先将输入序列中的所有潜在目标簇列为层次树结构,该结构指定了它们之间的相似性。然后,通过在需要的地方嵌入不匹配的情况下,在树的内部节点中提出了SGRNA,以使编辑诱导目标的效率最大化。我们建议使用几种设计最佳单个SGRNA的方法,以及一种计算实验平台允许多个以上的情况下的最佳SGRNA集合的方法。后者可以选择说明基因家庭成员之间的同源关系。我们进一步表明,通过在Solanum lycopersicum基因组中的所有基因家族中,通过在计算机检查中,CRISPYS优于基于比对的技术。©2018 Elsevier Ltd.保留所有权利。
02.30 pm - 02.40 pm索马·蒙达尔·戈莱(Soma Mondal Ghorai)教授(印度德里印度学院):嵌合内olysins的抗高速球菌和抗生物膜的活性分析:维特罗(Vitro印度德里):超级细菌的兴起:噬菌体可以提供防御线吗?02.50 pm – 03.00 pm Dr Jyoti Taneja (Daulat Ram College, University of Delhi, India ) : Identification and characterization of Potential Vaccine Candidate using hypothetical proteins from Mycoplasma genitalium : A Reverse Vaccinology Based Approach 03.00 pm – 03.10 pm Dr Raunak Dhanker (GD Goenka University, Gurugram, India) : Importance of Ciliates在浮游动物饮食中03.10 pm - 03.20 pm阿米特·加尔格教授(Acharya Narendra Dev学院,印度德里大学):03.20 pm - 03.30 pm Sarita Kumar教授(Acharya Narendra Dev College,Delhi of Delhi of Delhi of India of India) Engineering for Enhancing Abiotic Stress Tolerance: A Sustainable Pathway for Future Agriculture 03.40 pm – 03.50 pm Dr Geetika Kalra (Acharya Narendra Dev College, University of Delhi, India) : Impact of Exogenous Application of Antioxidants on ROS Signaling in Germinating Seeds of Solanum lycopersicum L. 03.50 pm – 04.00 pm Dr Manoj Kumar Singh (University of阿拉哈巴德(Allahabad),印度Prayagraj):探索从火龙果植物中分离出的内生细菌的潜力04.00 pm - 04.20 pm茶
摘要:土壤盐度是一种主要的非生物压力,它极大地阻碍了植物的生长和发育,从而降低了农作物的产量和生产力。作为全球最消耗的蔬菜之一,西红柿(Solanum lycropersicum L.)在人类饮食中起关键作用。当前的研究旨在探索两个番茄品种(里奥格兰德和阿格塔)的差异耐受水平。为此,在100 mM NaCl治疗两周后评估了各种生长,生理和生化属性。获得的发现表明,尽管盐应力的影响包括芽的干重和根部的干重和相对生长速率以及总叶面积的显着减少,但对于这两种品种来说,与Agata品种相比,Rio Grande的表现更好。此外,尽管暴露于盐胁迫,但里奥格兰德(Rio Grande)还是能够通过脯氨酸的积累来保持足够的组织水合和每个面积(LMA)的高叶子质量。然而,Agata品种的相对水含量,LMA和脯氨酸含量明显降低。同样,总叶叶绿素,可溶性蛋白和总碳水化合物显着降低。而在两个品种的盐胁迫下,丙二醛显着积累。此外,相对于里奥格兰德品种而言,这种负面影响对于Agata来说更为明显。总体而言,当前的研究提供了证据,表明在早期生长阶段,里奥格兰德比Agata品种更容易耐盐。因此,里奥格兰德的品种可能构成包括盐耐盐的番茄育种计划的好候选人,强烈建议番茄种植者,尤其是在受盐影响的田间中。