发现2D材料的发现为设计具有指定属性的新材料开辟了前所未有的机会。在许多情况下,设计指导原理基于一种或另一种接近性效应,即电子相关性从一种材料到另一种材料的纳米级 - 渗透。在几层范德华(VDW)异质结构中,接近区域占据了整个系统。在这里,我们证明了2D超导体/铁磁体VDW异质结构的磁性和超导接近效应的物理学是由两种材料电子光谱的界面杂交的影响确定的。可以通过门控调整杂交程度,这使得能够实现高度可控性的接近效应。,我们表明,这允许在此类结构中进行超导性电气切换,以及控制超导光谱的Zeeman分裂的振幅和迹象,为Spintronics和Spin Caloritronics打开了有趣的机会。
我们从理论和实验上研究了由具有 Dzyaloshinskii-Moriya 相互作用的倾斜反铁磁体共振引起的自旋泵浦信号,并证明它们可以产生易于观察的逆自旋霍尔电压。使用双层赤铁矿/重金属作为模型系统,我们在室温下测量反铁磁共振和相关的逆自旋霍尔电压,其值与共线反铁磁体一样大。正如对相干自旋泵浦的预期,我们观察到逆自旋霍尔电压的符号提供了有关模式手性的直接信息,这是通过比较赤铁矿、氧化铬和亚铁磁体钇铁石榴石推断出来的。我们的研究结果通过对具有低阻尼和倾斜矩的反铁磁体进行功能化,开辟了产生和检测太赫兹频率自旋电流的新方法。当代自旋电子学利用电子自旋进行信息处理和微电子学,主要基于铁磁器件架构。从提高数据处理速度和缩小片上信息处理规模的长远发展来看 [1],反铁磁体自旋电子学是一个很有前途的途径 [2]。与铁磁体相比,反铁磁体的关键优势在于它们的共振频率通过子晶格的交换耦合得到增强,因此通常在太赫兹范围内 [2,3]。然而,在补偿反铁磁体中,净矩的缺失严重阻碍了对其超快动力学的简单获取,尤其是在薄膜中,以及基于超快反铁磁体的器件的开发 [4,5]。因此,界面自旋输运现象可以为反铁磁体中的自旋弛豫过程和自旋动力学提供新的见解 [5–8]。
ramkrishnadeshmukh@gmail.com 摘要:本综述探讨了凝聚态物理学中的新兴现象,重点关注 2012 年至 2021 年的重大进展。它研究了理论基础,包括平均场理论和重正化群理论,并深入研究了量子相变和拓扑绝缘体等量子现象。该综述重点介绍了强关联系统的发展,特别是高温超导和量子自旋液体,并讨论了石墨烯和纳米结构等低维系统的独特性质和应用。此外,它还涵盖了磁性中的新兴现象,包括自旋电子学和 skyrmion,并总结了扫描隧道显微镜和角分辨光电子能谱等关键实验技术。还讨论了电子和储能领域的技术创新和未来前景,强调了新兴现象对基础研究和实际应用的深远影响。关键词:涌现现象、凝聚态物理、量子相变、拓扑绝缘体、高温超导、量子自旋液体、石墨烯、纳米结构、自旋电子学、skyrmions、扫描隧道显微镜、角分辨光发射光谱。 DOINumber:10.48047/nq.2022.20.7.NQ33574 NeuroQuantology 2022;20(7):4774-4783 I. 简介 A. 背景 1. 涌现现象的定义 凝聚态物理学中的涌现现象是指由材料中较简单成分的集体相互作用而产生的复杂行为和特性。仅通过孤立地研究单个成分是无法预测这些现象的。相反,它们来自系统内的集体动力学和相互作用,通常会导致新的和意想不到的物理特性。例如,涌现的概念在
动态核极化 (DNP) 在自旋电子学和量子信息处理中被公认为具有重要意义。DNP 可产生高核自旋极化,这不仅可以通过产生 Overhauser 场 (OHF) 来延长电子自旋寿命,而且还为探索核自旋量子比特提供了灵感。在应变量子点结构 (QDS) 中,核自旋通过其四极矩耦合到应变场。研究表明,这种核四极相互作用 (NQI) 可用于实现可观的 DNP 和电子自旋极化。在这里,我们发现了一系列横向排列的 (In,Ga)As QDS 的磁光异常,这些 QDS 是由这些纳米结构中的 NQI 和 DNP 引起的。我们发现对称性降低的 QDS 中 NQI 的主轴明显偏离生长方向,导致 OHF 倾斜超过 37°。针对晶体取向探测了由此产生的 OHF 横向分量,并分析了其对 DNP 和整体自旋失相的影响。我们表明,激子的高对称电子约束势不能保证同一纳米物体内原子核的高对称 NQI,因此需要对电子约束势和核自旋池的对称性进行相关优化。我们的研究结果强调了斜 NQI 在电子自旋退相干和去极化中的作用,而这一作用迄今为止在很大程度上被忽视了。因此,这项工作揭示了设计规则,用于设计 QDS 的电子和自旋景观,从而提高 DNP 在自旋电子学和量子计算中的应用性能。
在拓扑结晶绝缘子锡尿酸罐中对费米水平的调整对于访问其独特的表面状态并优化其电子性能(例如Spintronics和Quantum Computing)至关重要。在这项研究中,我们证明了尿尿酸罐中的费米水平可以通过控制化学蒸气沉积合成过程中的锡浓度来有效调节。通过引入富含锡的条件,我们观察到X射线光电学光谱型锡和泰瑟列的核心水平峰值,表明费米水平的向上移动。通过紫外线光谱法测量的工作函数值的下降证实了这种转移,从而证实了SN空位的抑制。我们的发现提供了一种低成本,可扩展的方法,可以在锡尿酸罐中实现可调节的费米水平,从而在具有量身定制的电子特性的材料开发方面取得了重大进步,用于下一代技术应用。
研究成果の概要(英文):我探索并开发了一种新型的三次立方相,用于铁磁性小啤酒化合物MN2FEGA(MFG),其最终目的是将此材料与2D材料(例如用于旋转光子应用)的2D材料耦合。这种新开发的材料显示了用于自旋应用的几种有利特性,包括:显着的垂直磁各向异性(PMA),高化学订购和高自旋极化。这些特性展示了一种适用于磁性随机访问记忆(MRAM)等自旋应用的材料。这些结果导致了目前正在审查的出版物,收到了积极的反馈,并将很快发表。此外,这些结果已为目前正在印刷的情况下获得了立方MFG/CR/MGO缓冲层的专利。最后,这些结果已在几个全国性的会议上提出,并引起了Spintronics社区的重大关注。
出生于1984年7月31日在科莫出生:已婚,两个子办公室:Polifab - Polifab - Politecnico di Milano的物理部,通过G. Colombo 81,20133 Milano电子邮件:Christian.rinaldi@rinaldi@polimi@polimi.it电话: 36545363200 Research ID: A-5686-2018 Web site: rinaldi.faculty.polimi.it/ I am an Associate Professor at Politecnico di Milano working on novel materials and phenomena related to spin-orbit physics ( spin-orbitronics ), research motivated by the willingness to exploit the spin of carriers in innovative electronic devices beyond CMOS.我从半导体Spintronics的博士学位开始了我的职业生涯。我探索了光旋取向和锗中旋转转运的物理。i开发了有效的自旋光二极管,通过自旋滤波来检测光螺旋的程度(adv。mater。2012)。作为捷克共和国物理研究所(T. Jungwirth教授)的客座研究人员,我通过对Cumnas进行开创性的研究为抗firomagnetic Spintronics的领域做出了贡献,为全电动读物和撰写反铁磁铁(Nature Commun。2013)。之后,我将精力投入到铁电性和自旋物理学的结合上,以寻求磁性或旋转传输的电气可控性。我为人工多表情的经典,非易失性的电力控制(自然公社2014,Adv。 电子。 mater。 2016)。 我撰写了对锗植也的第一次光谱研究(adv。 mater。 2016)。2014,Adv。电子。mater。2016)。我撰写了对锗植也的第一次光谱研究(adv。mater。2016)。我能够为开发自旋纹理的铁电剂作为铁电rashba半导体的发展设定独立的研究路径。i证明了这些材料允许对散装的散装式旋转纹理的前所未有的非挥发性控制(Nano Lett。2018)和硅兼容半导体中的自旋转换(自然电子2021)。这样的发现开放了一个全新的领域,并诞生了CMO之外的新设备,该设备能够进行记忆和基于旋转的计算,并在未来几十年的电子设备上具有超级功耗。
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。
量子大厅(QH)效应,量子自旋大厅(QSH)效应和量子谷霍尔(QVH)效应是石墨烯中三个特殊的拓扑绝缘阶段。它们的特征是三种不同类型的边缘状态。这三个效应分别由外部磁场,固有的自旋轨道耦合(SOC)和应变诱导的假磁场引起。在这里,我们从理论上研究了这些效果并存并分析边缘状态如何在三个之间发展时。我们发现真实的磁场,伪磁场将在SOC能量差距上方竞争,而QSH效应几乎不受SOC能量差距的影响。边缘状态从QH效应或QVH效应到QSH效应的过渡直接依赖于Zeroth Landau级别的排列。使用边缘状态过渡,我们提出了类似于自旋场效应晶体管(Spin-Fet)的设备,并设计了Spintronics多向开关。
物质生长,结构特性和表征(散装,纳米线,点)宽带gap半导体和设备的Terahertz和Mid Ristrared石墨烯的半导体,2D材料钙化材料,有机有机物半导体,具有物质的拓扑剂,拓扑结构和温度的旋转半元素的拓扑统一,并旋转了旋转的旋转剂,并旋转了旋转的旋转,并旋转了启发性旋转,并旋转了启发性的旋转,并成分 - 旋转旋转型旋转成分,成分 - 旋转式旋转成分,成分构成了旋转式旋转,并构成了旋转的旋转型,并构成了旋转式旋转式旋转式状态 (1D, 2D) Quantum Hall effect, fractional quantum Hall effect Optical properties of quantum dots and nanocrystals, optoelectronics, solar cells Nanophotonics, photonic crystals Quantum optics, quantum emitters, NV centers Quantum technologies: semiconductor qubits and applications, cryo-CMOS technologies Semiconductor hybrid systems, nano-mechanics, novel devices