在量子纠错中,有几种代码积的概念,例如超图积、同源积、提升积、平衡积等等。在本文中,我们引入了一种新的乘积码构造,它是经典乘积码到量子码的自然推广:从一组组件 Calderbank-Shor-Steane (CSS) 码开始,得到一个更大的 CSS 码,其中 X 奇偶校验和 Z 奇偶校验都与经典乘积码相关。我们从组件码的属性中推导出乘积 CSS 码的几个属性,包括代码距离的界限,并表明奇偶校验中的内置冗余会产生所谓的元校验,可以利用这些元校验来纠正综合读出错误。然后,我们专门研究单奇偶校验 (SPC) 乘积码的情况,在经典领域,这是构造乘积码的常见选择。在擦除信道的最大似然解码器和去极化噪声的信念传播解码下,显示了具有参数 [[512 , 174 , 8]] 的 SPC 3 倍乘积 CSS 代码的逻辑错误率模拟。我们将结果与其他具有可比长度和维度的代码进行比较,包括来自渐近良好 Tanner 代码系列的代码。我们观察到我们的参考乘积 CSS 代码优于所有其他经过检查的代码。
在量子纠错中,有几种代码积的概念,例如超图积、同源积、提升积、平衡积等等。在本文中,我们引入了一种新的乘积码构造,它是经典乘积码到量子码的自然推广:从一组组件 Calderbank-Shor-Steane (CSS) 码开始,得到一个更大的 CSS 码,其中 X 奇偶校验和 Z 奇偶校验都与经典乘积码相关。我们从组件码的属性中推导出乘积 CSS 码的几个属性,包括代码距离的界限,并表明奇偶校验中的内置冗余会产生所谓的元校验,可以利用这些元校验来纠正综合读出错误。然后,我们专门研究单奇偶校验 (SPC) 乘积码的情况,在经典领域,这是构造乘积码的常见选择。在擦除信道的最大似然解码器和去极化噪声的信念传播解码下,显示了具有参数 [[512 , 174 , 8]] 的 SPC 3 倍乘积 CSS 代码的逻辑错误率模拟。我们将结果与其他具有可比长度和维度的代码进行比较,包括来自渐近良好 Tanner 代码系列的代码。我们观察到我们的参考乘积 CSS 代码优于所有其他经过检查的代码。
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特上的位翻转错误将导致对目标量子比特施加有害的非操作,从而导致两个错误的量子比特,而不是一个。因此
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特的位翻转错误将导致有害的