摘要:同时定位和映射(SLAM)对于移动机器人技术至关重要。大多数vi-sual SLAM系统都假定环境是静态的。但是,在现实生活中,有许多动态对象,会影响这些系统的准确性和鲁棒性。为了改善视觉大满贯系统的表现,这项研究提出了基于定向的快速和旋转简短(ORB)-Slam3框架的动态视觉大满贯(SEG-SLAM)系统,您只能看一次(YOLO)V5深学习方法。首先,基于ORB-SLAM3框架,Yolov5深学习方法用于构建用于目标检测和语义分割的融合模块。此模块可以有效地识别并提取明显和潜在动态对象的先验信息。第二,使用先前的信息,深度信息和表现几何方法为不同的动态对象开发了差异化的动态特征拒绝策略。因此,提高了SEG-SLAM系统的定位和映射准确性。最后,拒绝结果与深度信息融合在一起,并使用点云库构建了无动态对象的静态密集映射。使用公共TUM数据集和现实世界情景评估SEG-SLAM系统。所提出的方法比当前动态视觉大满贯算法更准确,更健壮。
正如乔纳斯·拉尔森(Jonas Larsen)所说:“旅游和摄影是现代双胞胎。” [3]将AI作为另一种现代性添加到方程式中,从看不见的角度来看。在AI艺术中,数据集具有至关重要的价值:它决定了美学和概念。因此,当涉及该项目的数据集创建过程时,我们从Flickr下载了Lanzarote富有想象力的地理位置的所有循环现实(允许许可证),将它们分为两个:风景和旅游业。然后,在仔细准备每个图像池之后,我们应用了AI算法StyleGAN2,该算法生成了新图像(图1,2,3)。因此,艺术项目由两个视频组成,这些视频代表着使用StyleGan2的AI生成图像的潜在图像的潜在空间的旅程。后来,图像被组成为潜在的插值,这些插值采用了一种平稳的渐进视频形式。这两个视频是在StyleGAN2训练的模型的潜在空间中随机步行,创建了电影合成空间。通过从由静态图像组成的数据集中获得的融化的学习液体学习,视听作品显示了动画图像。视频从点到点,通过潜在空间的运动产生新的视图和含义空间。在视频响应视觉材料以完成艺术作品后生成视频后创建了音频。
扩散模型的出色实力促使其努力将其应用范围扩展到生成任务之外。然而,缺乏统一的AP批准来将扩散模型应用于具有不同语义颗粒性的视觉对任务的持续挑战。我们的目的是建立一个统一的视觉感知框架,利用生成模型和歧视模型之间的实质协同作用。在本文中,我们提出了一个简单而有效的框架,该框架构成了预先训练的稳定扩散(SD)模型,其中包含丰富的生成性先验,一个能够整合层次代表的头部(U-Head),并且能够整合层次代表,并提供了一个适应性的外观,并提供了不良的犯罪性犯罪性。全面研究揭示了苦艾酒的潜在特征,例如在不同的时间步骤和各种U-NET阶段隐藏在潜在变量中的感知的不同粒度。我们强调,将重量级或活体积的解码器纳入将扩散模型转换为较大的表示学习者没有任何信息。针对定制判别模型的广泛比较评估展示了我们方法对基于零的素描基于素描的图像检索(ZS-SBIR),少数射击分类和开放式播放量和开放式摄影(OV)SETANICE分割任务的效率。有希望的结果证明了扩散模型作为强大的学习者的潜力,并在提供信息丰富且健壮的视觉代码方面确立了重要的能力。
在3D视觉问题回答(3D VQA)中,完全注释的数据的稀缺性和有限的视觉内容多样性阻碍了对新型场景和3D概念的概括(例如,在Scanqa和SQA数据集中仅利用了大约800个场景)。当前的方法通过2D信息来制作Resort补充3D。但是,这些方法面临挑战:他们要么使用自上而下的2D视图,这些视图引发了过于复杂的,有时甚至是问题,要么依赖于2D VLMS的全球汇总场景/图像级表示,从而失去了良好的视觉效果 - 语言相关性。为了克服这些局限性,我们的方法采用了问题条件2D查看选择程序,从而指出了至关重要的视觉线索的语义相关的2D输入。然后,我们通过两支分支变压器结构将此2D知识集成到3D-VQA系统中。这种结构具有双转化器的特征,将2D和3D模态和结合方式结合在一起,并结合了模态之间的细粒度相关性,从而使它们互相增强。整合了上面提出的机制,我们提出了BridgeQa,该机制为3D-VQA的多模式变压器架构提供了新的视角。实验验证了BridgeQA可以在3D-VQA数据集上实现最新技术,并显着超过现有的解决方案。代码可在https:// github上找到。com/matthewdm0816/bridgeqa。
虚拟现实(VR)的进步减少了用户的经验不同。但是,现实与虚拟性之间的差距持续存在,这些任务需要以微妙的方式将用户的多模式物理技能与虚拟环境结合在一起。当物理性感觉不真实时,在VR EASILY中断中的用户实施例,尤其是当用户调用其天生的偏爱以触摸和操纵他们遇到的事物时。在这项研究中,我们研究了力量意识到的VR接口的潜力,可以使自然连接与用户物理学,并在高技能触摸案例中对其进行评估。将表面肌电图(SEMG)与视觉跟踪相结合,我们开发了一个基于端到端学习的系统,势力,从其前臂SEMG信号中解码用户的灵活的手指力,以直接在标准VR管道中使用。这种方法消除了对手持式触觉设备的需求,从而促进了自然实施。一系列有关VR中的操纵任务的用户研究,该势力比替代解决方案更准确,更健壮和直观。两个概念证明VR应用程序,书法和钢琴演奏,证明了Vi-Sual,听觉和触觉方式之间的良好协同作用,因为ForceSense提供了提高用户在VR中的任务学习表现的潜力。我们的源代码和受过训练的模型将在https:// github上发布。com/nyu-icl/vr-force-aware-multimodal-Interface。
亲爱的编辑,基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)与其他类型的BCI相比,具有更高的识别准确率、与刺激的关系更可靠、信息传输速率(ITR)更高等性能,引起了研究人员的广泛关注。基于SSVEP的BCI面临的一个主要挑战是可用于编码视觉目标的频带有限。更多的视觉目标可能会带来更高的ITR。为了解决这个问题,研究人员正在尝试设计新的编码方案,包括以代码形式呈现频率刺激和在编码方案中利用联合相位和频率信息[1-3]。这些研究通过将通信框架应用于BCI取得了显著的成果。受这些研究的启发,本研究提出了一种利用频率和空间信息对视觉目标进行编码的新编码方法。我们扩展了 [ 4 ] 的编码方案,在原始空间编码方案中引入了频率信息。根据我们提出的编码方案,我们实现了一个 BCI 系统,该系统利用四个不同的频率和相对于每个频率刺激的四个不同位置呈现 16 个视觉目标。与仅在编码方案中使用频率信息或空间信息的传统 BCI 系统相比,我们的提议研究可以
源文档的。 此类源归因042方法使用户可以检查输出的043可靠性(Asai等人。 ,2024)。 044 However, text-based generation with source attri- 045 bution faces several issues: First, citing the source 046 at the document level could impose a heavy cogni- 047 tive burden on users ( Foster , 1979 ; Sweller , 2011 ), 048 where users often struggle to locate the core ev- 049 idence at the section or passage level within the 050 dense and multi-page document. 尽管有051个粒度不匹配可以通过基于052通道引用的生成方法来解决 - 链接 - 053对特定文本块的答案,它需要非054个琐碎的额外工程工作,以匹配文档源中的块055。 此外,源文档中的视觉高-056照明文本块对用户的直观更加直观,但是它仍然具有挑战性,因为它需要控制文档渲染,这是059,它并不总是可以访问,例如PDF方案中。 060受到最新文档屏幕截图EM- 061床上用品检索范式的启发 - 放下文档 - 062 Ment Processing模块,直接使用VLM 063来保留内容完整性和编码Doc-064 UMent ument屏幕截图(Ma等人。 ,2024),065,我们询问源归因是否也可以在066中添加到如此统一的视觉范式中,以es- 067 tablish tablish tablish tablish a Tablish a Tablish a既是视觉,端到端可验证的RAG 068管道,既是用户友好且有效? 069为此,我们提出了通过VI Sual s usce a ttribution(Visa)的检索增加的070代。。此类源归因042方法使用户可以检查输出的043可靠性(Asai等人。,2024)。044 However, text-based generation with source attri- 045 bution faces several issues: First, citing the source 046 at the document level could impose a heavy cogni- 047 tive burden on users ( Foster , 1979 ; Sweller , 2011 ), 048 where users often struggle to locate the core ev- 049 idence at the section or passage level within the 050 dense and multi-page document.尽管有051个粒度不匹配可以通过基于052通道引用的生成方法来解决 - 链接 - 053对特定文本块的答案,它需要非054个琐碎的额外工程工作,以匹配文档源中的块055。此外,源文档中的视觉高-056照明文本块对用户的直观更加直观,但是它仍然具有挑战性,因为它需要控制文档渲染,这是059,它并不总是可以访问,例如PDF方案中。060受到最新文档屏幕截图EM- 061床上用品检索范式的启发 - 放下文档 - 062 Ment Processing模块,直接使用VLM 063来保留内容完整性和编码Doc-064 UMent ument屏幕截图(Ma等人。,2024),065,我们询问源归因是否也可以在066中添加到如此统一的视觉范式中,以es- 067 tablish tablish tablish tablish a Tablish a Tablish a既是视觉,端到端可验证的RAG 068管道,既是用户友好且有效?069为此,我们提出了通过VI Sual s usce a ttribution(Visa)的检索增加的070代。071在我们的方法中,大型视觉模型072(VLM)处理单个或多个检索的文档图像,不仅为074产生了对074用户查询的答案,而且还返回了075框架内的相关区域内的相关区域。076如图1所示,此方法通过视觉上指示文档中的确切078位置来启用di-077 rect归因,从而允许用户在080原始上下文中快速检查生成答案的原始上下文中的支持证据。VLMS 081不受文档格式或渲染的限制,082
探索大脑活动如何转化为视觉感知,为生物视觉系统的世界代表提供了宝贵的视觉感。最近使用功能性磁共振成像(fMRI)或磁脑摄影(MEG)获得的大脑信号实现了有效的图像分类和高质量的重构。但是,这些技术的成本和批量妨碍了它们的实际应用。相比之下,电子摄影(EEG)提出了诸如易用性,可负担性,高时间分辨率和非侵入性操作等优点,但由于缺乏全面的数据集,在相关研究中仍未充分利用。为了填补这一空白,我们介绍了EEG-IMAGENET,这是一个新颖的EEG数据集,其中包含来自16名参与者的录音,这些录音是暴露于Imagenet数据集中的4000张图像。与现有基准相比,此数据集提供的五倍对脑电图对数的数量是五倍。eeg-imagenet包括带有不同水平的粒度标记的图像刺激,包含40张带有粗标签的图像和40个带有精美标签的图像。我们基于此数据集建立了对象分类和图像重建的基准。使用几种常用模型的实验表明,表现最佳的模型可以通过约60%的准确性实现对象分类,并具有三向识别的图像重建约为64%。这些发现突出了数据集增强基于EEG的Vi-Sual Brain-Computer界面的潜力,加深了我们对生物系统中视觉感知的理解,并提出了有望改善机器视觉模型的有希望的应用。
理解标准化摄取值、其方法和使用意义 古人仅依靠视觉来解释天空中的明亮物体。但随着技术的进步,人们可以量化恒星距离,从而获得绝对星等。类似地,在 PET 中,标准化摄取值 (SUV) 开始用作补充视觉解释的工具。摄取标准化为注射剂量/单位重量的分数,早在 1941 年就已开始使用 ( 1 )。它被指定为差异吸收率 (DAR),并在 20 世纪 80 年代用于 PET ( 2 )。文献中偶尔会出现诸如微分(或剂量)摄取比率 (DUR) 和标准化摄取比率 (SUR) 之类的别名。SUV 是使用中的一类无量纲 Q(� 单位体积平均活性)比率的特殊成员:组织 Q � 标准化 Q。后者可以是对侧、背景、器官(例如肝脏、大脑等),特别是全身,因为 SUV � 组织 Q � 全身 Q(包括示踪剂排泄物)� 组织 Q � 每单位身体体积、重量或面积的注射剂量。对于(时间不变的)分母——而不是整个身体周围的感兴趣区域(ROI)或使用体积单位——有传统且方便的重量或体表面积用法,允许人们获得有量度的(以 mg/mL 或 m 2 /mL 为单位)结果。当对整个身体取平均值时,SUV(以 mg/mL 为单位)等于身体密度。SUV 通常被称为半定量分析,其受欢迎程度归功于方法的简单性,可与
相关性模块在电子商务搜索中起着基本作用,因为他们负责根据用户查询从数千个项目中选择相关产品,从而增强用户的体验和效率。传统方法根据产品标题和用户查询来计算相关性得分,但是单独的标题中的信息可能不足以完全删除产品。一种更通用的方法是进一步利用产品图像信息。近年来,视觉语言预训练模型在许多情况下都实现了令人印象深刻的恢复,这些模型将构图的研究利用将文本和vi-sual特征映射到关节嵌入空间中。在电子商务中,一种常见的做法是根据预先训练的模型,使用电子商务数据进一步微调模型。但是,性能是最佳的,因为视觉语言预训练模型缺乏专门为查询设计的一致性。在此过程中,我们提出了Q uery-a an an a an an a a a guage i mage f usion e mbedding,以应对这些挑战(Query-Life)。它利用基于查询的mul-timodal融合来根据产品类型有效地合并图像和标题。在方面,它采用查询感知的模态对准来增强产品的全面表示的准确性。此外,我们设计了Genfilt,它利用大型模型的发电能力过滤出虚假的负样本,并进一步改善模型中对比度学习任务的整体性能。实验表明,查询寿命的表现优于现有基准。我们进行了消融研究和人类评估,以验证查询寿命内每个模块的效率。此外,查询生活已在Miravia搜索1