● 与董事会主席定期会面,审查和制定董事会会议议程并讨论学区事务。 ● 为董事会-主管团队安排 8 人小组培训。 ● 促进与当地组织的积极合作 ● 审查教学计划、计划、实践以及课程和支持材料。 ● 庆祝学生、家长、教职员工、社区成员和领导者的成就。 ● 与教学改进团队会面,讨论学生成绩数据 ● 审查/开展学校氛围调查 ● 分析评估、监测和评估系统。 ● 审查学校改进规划流程,并确定规划流程与学区目标预期结果之间的一致性以及改进的财政支持。
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
量子力学系统的希尔伯特空间可以具有非平凡几何,这一认识导致人们在单粒子和多粒子量子系统中发现了大量新奇现象。特别是,与单粒子波函数相关的几何考虑导致了非相互作用拓扑绝缘体 (TI) 的最初发现和最终分类 [1 – 4] ,以及对这些相中缺陷相关特性的研究 [5 – 8] 。另一方面,在分数量子霍尔系统 (FQHS) [9,10] 和分数陈绝缘体 (FCI) [11,12] 的框架内,研究了拓扑与占据非平凡单粒子态的粒子间相互作用之间相互作用所产生的迷人物理。然而,由于后者的关联性质,建立单粒子和多粒子层面上非平凡几何的作用之间的直接关系一直很困难。在本文中,我们展示了二维 (2D) 单粒子能带结构的非平凡几何与相关 Bardeen-Cooper-Schrieffer (BCS) 超导体的响应特性之间的明确联系 [13] 。特别地,我们表明,在用大质量狄拉克模型描述正常态的二维系统中,超导态遵循修改的通量量子化条件,从而产生分数通量涡旋以及非常规约瑟夫森响应。必须强调的是,超导态与正常态没有扰动关系。但是,正如我们在下面所展示的,使用 BCS 变分假设可以处理相变两侧的几何作用。流形量子化源于这样一个事实:在块体超导体内部深处,序参量的整体相位是恒定的。在传统的
在 21 世纪,技术正以前所未有的速度发展,人工智能 (AI) 处于这一变革的最前沿。自 2022 年底推出 ChatGPT 以来,生成式人工智能引起了广泛关注。这项创新技术越来越多地融入各种电子设备中,彻底改变了我们与数字内容交互的方式。本文将探讨提示工程*的原理及其在生成式人工智能 (GAI) 中的应用,特别关注其在学术环境中的使用,并讨论有效提示技术的重要性、合适的人工智能模型的选择,以及将人工智能工具整合到教育中的潜在好处和挑战。
X870 可以处理各种高带宽应用,包括高密度 10 Gb 机架顶部聚合、新兴的 25Gb 和 50 Gb 以太网以及 10 0 Gb 主干/叶结构部署。X870 为高带宽 10 0 Gb 主干结构应用和高密度 10 G 和 25Gb 边缘叶聚合提供了独特的灵活性,所有这些都采用了经过验证的 ExtremeXOS 操作系统。可以使用各种 QSFP+ 光收发器和电缆来支持 10 Gb 和 40 Gb 以太网,而可以使用 QSFP28 光收发器来支持 25Gb、50 Gb 和 10 0 Gb 以太网应用。
福利和承保范围(SBC)文件摘要将帮助您选择健康计划。SBC向您展示了您和计划将如何分享涵盖医疗服务的费用。注意:将单独提供有关此计划成本(称为保费)的信息。这只是一个摘要。有关您的覆盖范围的更多信息,或获取完整覆盖条款的副本,请访问https://ambetter.superiorhealthplan.com/2023-brochures.html,或致电1-877-687-1196(bellay Dexas/tty 1-800-735-2989)。有关通用术语的一般定义,例如允许金额,余额计费,共同保险,共付额,可扣除,提供者或其他下划线条款,请参见词汇表。您可以在https://www.healthcare.gov/sbc-glossary上查看词汇表,或致电1-877-687-1196(接力德克萨斯州/TTY 1-800-735-2989)以要求副本。
低于2.17 K,称为𝝀点,氦流体失去其粘度,表现出非凡的现象,使其名称为“ Superfluid”。本研究旨在揭示这些现象的根本原因。地球上的大多数物质都是通过各种力相互吸引,将固体固定在一起或在流体中产生粘度的分子。超流体是一个例外。在超流体氦气中,分子之间没有吸引力。氦气的简单和对称的原子结构使其不受伦敦分散力以外的大多数分子力的免疫。在低温下,即使伦敦分散力的吸引力也很弱。没有任何分子间吸引,其超流体状态的氦气没有粘度。超流体不是常规的流体,而是单个颗粒的集合。由于过渡到超流体状态涉及断裂键,因此需要能量,从而降低温度并促进过渡。因此,像大多数相变的恒定温度不会在恒定温度下发生过渡。相反,𝝀点标记了过渡的末端,该末端应至少在2.6 K或更高时开始。该预测与观察到的特定热量的曲率在𝝀点附近的曲率保持一致。了解超流体中的分子间吸引力的缺乏解释了许多观察到的现象。这种缺乏吸引力还解释了为什么不能简单地通过降低超氟的温度来形成固体。但是,在高压下可以形成氦固体。这表明一种新型的键称为“压缩键”,可能是由高压下电子云的变形引起的。这种键也可能在极端压力下形成的金属氢中固定在一起,并可以解释金属分子之间的吸引力。