基于量子纠缠和相应的量子通信,我们研究一种简单的超光速纠缠通信方案,其关键是建立两个相互纠缠的粒子或装置A和B,我们观测和控制A位置的信息,就可以知道B位置的相应结果,这并不是直接互相发送信息,而是可以超光速的。在狭义相对论中我们规定了必须有两个以光锥相隔的对称拓扑结构,这包括了类空区间的广义洛伦兹变换(GLT),其中相速度是超光速的。这是本方案的基础,可以检验GLT。关键词:量子纠缠;通信;超光速;狭义相对论。 1. 引言基于爱因斯坦-波多尔斯基-罗森(EPR)关联和贝尔不等式,Aspect等人首先通过测量钙辐射级联和时变分析仪发射的光子对的线性偏振关联实现了EPR实验,并与
寻找一个将广义相对论和量子理论融为一体的理论框架已被证明是物理学中最困难的任务之一。这一追求背后的一个普遍假设是引力本身必须具有量子性质。事实上,有人从多个角度反对以量子方式处理物质场而以经典方式处理引力的方案 [1, 2]。然而,这些论点被发现没有预想的那么令人信服(例如,参见 [3, 4, 5])。很明显,关于引力基本性质的最终裁决必须以量子理论和引力都发挥重要作用的情况下的实验证据为基础。标准预期是,这种情况只会出现在涉及极高能量的现象中,或者当曲率值接近普朗克尺度(即 R ∼ 1 /m 2 p)时——这两种情况目前都远远超出了我们的经验范围。然而,最近有提案在桌面实验中寻找引力的可能量子行为,[6, 7]。与此同时,也有提案提出,通过探索涉及与需要量子力学处理的状态下的物质源相关的引力场的思想实验,可能会获得有用的提示,[8, 9]。后一种方法的具体实例已在 [10, 11, 12] 中进行了详细探讨。所考虑的思想实验涉及两个观察者:一个控制放置在两个空间位置的量子叠加中的粒子,另一个决定是否允许第二个粒子对其与第一个粒子的(电磁或引力)相互作用作出反应。这种设置使得粒子之间的相互作用似乎会阻止
波士顿,2024 年 9 月 9 日——Superluminal Medicines, Inc.,一家“膜公司”,利用生成生物学、化学和机器学习方法彻底改变药物生产的速度和准确性,今天宣布完成 1.2 亿美元的 A 轮融资。RA Capital Management 领投,现有投资者 Insight Partners、NVentures(NVIDIA 的风险投资部门)和 Gaingels 参与其中。新投资者 Catalio Capital Management、Eli Lilly and Company 和 Cooley LLP 加入了融资,Catalio 的医学博士 Diamantis Xylas 加入了董事会。这些资金将支持 Superluminal 的领先项目进入临床开发阶段,并增加专注于高价值 G 蛋白偶联受体 (GPCR) 靶点的小分子药物发现项目的数量。该公司的平台利用人类理解、生成生物学、化学、机器学习和专有大数据基础设施的独特组合,快速创建候选化合物。 Superluminal Medicines 首席执行官 Cony D'Cruz 表示:“在我们快速推进现有高价值项目并扩大产品线的过程中,我们非常感激能够得到知名种子投资者和杰出新投资者的持续支持。我们正在推进六个小分子项目,并继续构建发现平台,以快速高效地为任何膜药物靶点生成疗法。” RA Capital Management 合伙人兼董事总经理 Andrew Levin 医学博士表示:“Superluminal 推进现有项目以应对真正具有挑战性的药物靶点的速度让我们印象深刻。Superluminal 的平台和团队已经取得了成功,我们很高兴继续支持公司进一步成长和发展。” Superluminal 专注于介导细胞信号传导和人体生理学基本反应过程的膜受体,并构成主要的药物靶点类别,包括 GPCR、离子通道和转运蛋白。GPCR 是一大类整合膜蛋白,是约 35% 所有获批药物的药物靶点。然而,800 多个 GPCR 中有 70% 尚未被药物治疗,只有 138 个具有实验性的活性状态蛋白质结构。“我们的方法使我们能够动态地查询蛋白质,探索蛋白质可以采用的各种构象,这对于识别由膜受体介导的特定疾病状态至关重要,”D'Cruz 先生说。“通过了解和利用这些动态特性,我们可以在细胞和身体的自然环境中积极干预。”
马萨诸塞州波士顿,2023 年 8 月 28 日——Superluminal Medicines Inc. 是一家生成生物学和化学公司,致力于开发差异化产品线并彻底改变药物生产的速度和准确性,该公司今天宣布完成一轮 3300 万美元的融资。该投资由 RA Capital Management 牵头,Insight Partners 和 NVIDIA 也参与其中。Gaingels 也参与了融资。这笔资金将用于推进 Superluminal 的小分子药物发现项目,该项目最初专注于高价值的 G 蛋白偶联受体 (GPCR) 靶点。该公司的产品线源于其平台,该平台利用人类理解、生成生物学和化学、机器学习和专有大数据基础设施的独特组合,在短短几个月内创造出具有差异化 TPP 的候选化合物。Superluminal Medicines 首席执行官 Cony D'Cruz 表示:“我们很感激得到知名投资者的支持,因为我们对药物发现和开发的速度、准确性和成本效益有了新的期望。” “我们对生物学的深刻理解以及我们运用必要技术和工具有效探索和操纵生物学的能力是关键的差异化因素,我们相信这最终将使我们能够开发出治疗药物。” “Superluminal 从预测到结构验证再到首次生物学成功的速度是前所未有的,”RA Capital Management 合伙人兼董事总经理医学博士 Andrew Levin 说道。“Superluminal 在结合生物学、化学和技术方面的独创性具有巨大潜力,可以加速药物发现并提高小分子药物开发的成功率。我们很高兴能够支持 Superluminal 团队推进其差异化方法以选择先导项目候选人。” GPCR 是一大家族整合膜蛋白,是细胞信号传导的关键调节器。在 850 种 GPCR 中,70% 未使用药物,只有 138 种具有实验性活性状态的蛋白质结构。 “决定专注于 GPCR 是我们想研究天然状态的蛋白质的愿望。 “我们的方法使我们能够以动态的方式研究蛋白质,探索蛋白质可以采用的多种构象,”D'Cruz 先生说。“通过理解和利用这些动态特性,我们可以在细胞和身体的自然环境中以积极的方式进行干预。”
摘要:贝尔的定理意味着,使用隐藏变量的量子力学的完成(即,所有可观察物的先前存在值)在爱因斯坦的意义上都必须是非本地的。这通常表明对隐藏变量的了解将允许超光通信。可以预期这种超亮信信号传导,类似于首选参考框架的存在。但是,在这里我们提供了一个协议,该协议允许了解隐藏变量的知识与她自己的因果关系通信,而无需超光信号传导。也就是说,这种知识将与因果关系矛盾,而无意义的相对论理论的有效性。我们提出绕过悖论的方式,即使状态不在状态不改变其值也可能会改变其值,这意味着在Bohmian力学中禁止及时向后发信号。
第三,选择测量轴的能力不允许超光线通信。爱丽丝可以选择是(i)测量s z还是(ii)测量s x,而这种选择瞬时会影响粒子b的量子状态。如果鲍勃(Bob)可以找到一种区分案例(i)和(ii)的方法,甚至从统计上讲,这将是一种侵犯相对性理论的方法!但事实证明这是不可能的。关键问题是量子状态本身无法衡量;只能测量可观察到的物品。假设爱丽丝的测量是ˆ S z,它折叠为b | | + z⟩或| - z⟩,每个都有概率1/2。< / div>鲍勃现在必须选择要执行的测量值。如果他测量了S Z,则结果为 +ℏ / 2或 - ℏ / 2,概率相等。如果他测量S X,则概率为:
Abstract: Arguments by Sorkin [100] and Borsten, Jubb, and Kells [14] establish that a nat- ural extension of quantum measurement theory from non-relativistic quantum mechanics to relativistic quantum theory leads to the unacceptable consequence that expectation values in one region depend on which non-selective measurement is performed in a spacelike sep- arated region.Sorkin [100]将这种情况标记为“不可能的测量”。我们将这些论点明确地呈现为不进行还原参数的逻辑形式,并研究了量子场理论(QFT)中测量的后果。sorkin型不可能的测量场景清楚地说明了一种道德,即在使用LUDERS规则的相对论量子理论中,微量子性本身不足以排除超光信号传导。我们审查了三种不同的方法来制定QFT量度的说明,并分析其对“不可能测量”问题的反应。这两种方法是针对QFT的测量理论的最新建议:基于Polo-G´omez,Garay和Mart´ın-Mart´ınez提出的检测器模型的测量理论[86],以及在少数少数和Verch中提出的代数QFT的测量框架[41]。对QFT基础的特别感兴趣的是,尽管在精神上和细节上有很大的不同,例如国家更新规则所采取的形式,但它们可能具有有关如何代表QFT的一般道德的共同特征。仔细注意动态是解决“不可能测量”问题的两种策略的重要组成部分。都放弃了对可观察到的局部代数A(O)的传统操作解释,代表了在o区域进行的可能的操作。他们各自的状态更新规则不能从字面上解释为在任何时空中发生的测量时都表示系统状态的物理变化。
量子信息和时空物理学界所采用的因果关系概念是截然不同的。虽然经验告诉我们,这些概念在物理实验中以兼容的方式一起发挥作用,但它们的一般相互作用在理论上却鲜为人知。因此,我们开发了一个理论框架,将这两个因果关系概念联系起来,同时也清楚地区分它们。该框架描述了通过反馈回路进行的量子操作组合,以及将由此产生的可能循环的信息理论结构嵌入非循环时空结构中。然后,相对论因果关系(禁止超光速通信)作为这两个结构之间的图论兼容性条件。通过证明量子信息界广泛研究的不确定因果顺序 (ICO) 过程可以在我们的框架内表述,我们阐明了不确定因果关系和循环因果关系之间的联系,以及有关它们的物理性的问题。具体来说,有几项实验声称在闵可夫斯基时空中实现了 ICO 过程,这提出了一个明显的理论悖论:不确定的信息论因果结构如何与确定的时空结构相一致?我们通过不定理来解决这个问题,表明作为相对论因果关系的结果,(a) ICO 过程的实现必然涉及时空中系统的非局部化,(b) 仍然可以在更细粒度的层面上用确定的、非循环的因果顺序过程来解释。这些结果是通过引入细粒度概念实现的,细粒度概念允许在不同细节层面上分析因果结构。这完全解决了明显的悖论,并对 ICO 实验的物理解释具有重要意义。我们的工作还阐明了时空中量子信息处理的极限,并对固定时空范围内外不确定因果关系的操作意义提供了具体的见解。
调节(或有限的速度)[7],[8],它可以实现广泛的应用和物理现象,例如时间逆转[8],[9],时间折射[10] - [12] - [12],基本界限[13],光束分裂[14],光束生成[15],光照射[16],旋转[16] [18],完美的吸收[19],参数放大[20],时间阻抗匹配[21]和时间瞄准[22]。近年来,该制度还经过古典物理学[23] - [27]。The modulation velocity can also vary uniformly, ranging from subluminal to superluminal speeds [28] – [32] , which introduces additional novel phenomena, including Doppler shifting [29] , [33] , [34] , magnetless nonreciprocity [35]–[37] , space-time reversal [38] , dynamic diffraction [39] ,不对称带隙[29],[40],[41]和分离[42],光偏射[43] - [45],量子宇宙学类似物[46]和减震波的产生[47]。最后,调制速度可以是不均匀的,加速度可以实现现象,例如移动镜[48],光子发射[49],chirping [50],光弯曲[51]和重力类似物[52] [52]。GGSTEM包括几个基本结构,包括界面,板,时空晶体和时空超材料。接口充当所有GSTEM的核心构建块[53],[54]。平板是通过堆叠以相同速度移动的两个接口[55],[56]来形成的。空间时间晶体是由具有不同特性的平板的定期重复而产生的[29]。纸张的组织如下。接下来,最后,通过将这些晶体的空间和时间周期减少到亚波长度和子周期量表[29],[40]来创建时空元素。在这里,我们介绍了一个新的基本类别结构,即时空楔。通过将两个时空接口与不同的速度相结合,形成了一个时空楔形,这是对应于时空图中的楔形或三角形结构的。在纯粹的空间表示中,作为横坐标和特性(例如折射率或电势)作为顺序的空间,这些楔子对应于收缩(闭合楔形)或扩展(开放楔形)板。第2节介绍了时空楔形的概念,作为召开空间楔形的扩展。然后,第3节提出了所有可能类型的时空楔形物的策略。
量子力学(QM)与其他物理理论不同,因为其优雅而强大的数学形式主义掩盖了缺乏独特,完整和一致的概念框架,以适应应与数学对象相应的物理元素。过多的数学化,物理学模糊以及放弃其余物理学所依赖的原则(例如现实主义,确定性,位置,客观性或描述性)在我们所知的QM遗产中一直是不适的签名。从不同的角度看,该研究主题的目的是促进对QM物理学的讨论。作者被邀请仔细观察正式的设备,并迈向更现实和现实主义QM的新途径。本期所包含的15篇文章代表了不同的努力来识别基本的物理定律和因果关系,提出了可能的“ subquantum”理论描述,修改理论与观察之间的对应规则,或提供逻辑论点。具体模型,质疑不可能的定理。Gerard'T Hooft(Hooft)的介绍性陈述在本期中的许多文章中携带了火炬:“没有浪费时间和精力,对哲学上的正当施加和含义,我们写下了量子系统的量子条件,以使其数学上等于确定性系统。答案当然是,他们将自己的起源追溯到海森伯格,博尔和爱因斯坦的著作。”'T Hooft的文章的自然流量和简单性是伟大的硕士签名,这提出了一个问题,为什么我们在过去考虑过所有这些哲学上的理由。还有关于贝尔型不平等的大量文献,声称超出了哲学。贝尔的定理通过对原子和亚原子实体的实验的极端解释来规避。一个极端是超亮体“影响”(不是信息传递)的推断,另一个极端是超确定主义,如霍森费尔德(Hossenfelder)和帕尔默(Palmer)(Hossenfelder and Palmer)的文章中更可口的形式所讨论的。贝尔的定理在寻找我们世界的当地现实主义者和确定性描述时,代表了一个重大的绊脚石。然而,对这个问题的几项贡献表明,它并不构成被认为是的无法动的障碍,因为它不仅很难与任何实际的实验相关,而且还包含可疑的物理假设。oaknin(oaknin)表明,贝尔型不平等的推导遭受与贝尔变量的测量有关的深层物理问题,这需要绝对的