调节(或有限的速度)[7],[8],它可以实现广泛的应用和物理现象,例如时间逆转[8],[9],时间折射[10] - [12] - [12],基本界限[13],光束分裂[14],光束生成[15],光照射[16],旋转[16] [18],完美的吸收[19],参数放大[20],时间阻抗匹配[21]和时间瞄准[22]。近年来,该制度还经过古典物理学[23] - [27]。The modulation velocity can also vary uniformly, ranging from subluminal to superluminal speeds [28] – [32] , which introduces additional novel phenomena, including Doppler shifting [29] , [33] , [34] , magnetless nonreciprocity [35]–[37] , space-time reversal [38] , dynamic diffraction [39] ,不对称带隙[29],[40],[41]和分离[42],光偏射[43] - [45],量子宇宙学类似物[46]和减震波的产生[47]。最后,调制速度可以是不均匀的,加速度可以实现现象,例如移动镜[48],光子发射[49],chirping [50],光弯曲[51]和重力类似物[52] [52]。GGSTEM包括几个基本结构,包括界面,板,时空晶体和时空超材料。接口充当所有GSTEM的核心构建块[53],[54]。平板是通过堆叠以相同速度移动的两个接口[55],[56]来形成的。空间时间晶体是由具有不同特性的平板的定期重复而产生的[29]。纸张的组织如下。接下来,最后,通过将这些晶体的空间和时间周期减少到亚波长度和子周期量表[29],[40]来创建时空元素。在这里,我们介绍了一个新的基本类别结构,即时空楔。通过将两个时空接口与不同的速度相结合,形成了一个时空楔形,这是对应于时空图中的楔形或三角形结构的。在纯粹的空间表示中,作为横坐标和特性(例如折射率或电势)作为顺序的空间,这些楔子对应于收缩(闭合楔形)或扩展(开放楔形)板。第2节介绍了时空楔形的概念,作为召开空间楔形的扩展。然后,第3节提出了所有可能类型的时空楔形物的策略。
主要关键词