对二进制恒星的研究是天体物理学最古老的地区之一。二进制恒星的结果是我们对恒星如何形成和进化,银河恒星种群,化学演化和宇宙学距离量表的理解至关重要的。宽的二进制文件使我们能够探测正常恒星的性质,包括其质量的直接测量。黯然失色的二进制物是唯一可以将质量和半径高精度测量的恒星。紧密的二进制文件可用于研究质量转移,质量损失,积聚盘以及恒星如何进化的物理。二进制恒星进化对于灾难变量,Novae,Supernovae,X射线二进制,毫秒,毫秒脉冲星,伽马射线爆发和引力波事件至关重要。行星都在S型和P型轨道的二元星系中发现。
罗马将观察数十亿个星系,详细介绍超新星和其他宇宙现象。数据将推动有关暗能和暗物质的发现,这是科学无法完全解释的宇宙的两个谜团。望远镜还将以空前的细节研究外行星 - 太阳系以外的行星。罗马人将在数百天内监视1亿颗恒星,并有望发现约2500个新行星。是可能支持存在液态水的地区的岩石行星。
相互作用,即它们不带任何电荷。因此,它们是暗粒子,因为它们不发光,这是一种电磁现象,并且是物质,因为它们像正常物质一样具有质量,因此通过引力相互作用。暗能量是一种未知的能量形式,它以最大的尺度影响着宇宙。它存在的第一个观察证据来自对超新星的测量,这表明宇宙并不是以恒定的速度膨胀,而是宇宙的膨胀正在加速。因此,陈述 1 是正确的。
超新星(SNS)是星际介质中重要的能量来源。超新星(SNR)的年轻残留物在X射线区域显示峰值发射,使其成为X射线观测的有趣对象。尤其是,由于其历史记录,接近性和亮度,Supernova Remnant SN1006引起了极大的兴趣。因此,已对其进行了许多X射线望远镜进行了研究。改善此残留物的X射线成像是一项重要但具有挑战性的任务,因为它通常需要对图像整个对象进行不同仪器响应的多次观察。在这里,我们使用Chandra观测来证明使用信息字段理论(IFT)的贝叶斯图像重建能力。我们的目标是从X射线观测值重建,脱卷和空间 - 光谱分辨的图像,并将发射分解为不同的形态,即弥漫性和点状。此外,我们的目标是将来自不同检测器和点的数据融合到马赛克中,并量化结果的不确定性。通过利用有关扩散发射和点源的空间和光谱相关结构的先验知识,该方法允许信号有效分解为这两个组件。为了加速成像过程,我们引入了一种多步进方法,其中使用单个能量范围获得的空间重建用于得出完整时空光谱重建的知情起点。我们将此方法应用于2008年和2012年的SN1006的11个Chandra观察结果,提供了残留物的详细,剥夺和分解的观点。尤其是,弥漫发射的分离视图应提供对残留物中心和冲击前剖面中复杂的小规模结构的新见解。例如,我们的分析揭示了在SN1006的冲击阵线下,锋利的X射线通量最多增加了两个数量级。
ngst将帮助我们确定宇宙的几何形状,并使我们能够确定宇宙是否会继续扩展。今天,我们看到迹象表明,扩张实际上是在加速,而不是在重力的影响下欺骗其组成物质。ngst将能够在遥远的过去观察超新星。通过使用这些已知亮度的“标准蜡烛”,天文学家将能够测量宇宙的大小和几何结构。ngst对于研究神秘的暗物质的影响也将是独特的。我们知道,这种奇怪的物质形式占宇宙质量的90%以上。尽管NGST与其他望远镜一样,只能观察到发光的物体,但它将能够检测到由中等质量引起的最遥远星系的形状中的细微扭曲,而间隔质量的重力偏转引起的,这是无法直接看到的。
尤其是目前运行的强大望远镜宇宙气体,主要由电离原子和电子组成,并占宇宙总物质含量的15%以上(其余的归因于暗物质),继续避免了其精确的分布映射。虽然望远镜使我们可以轻松地观察星系中的恒星,但恒星仅占宇宙中所有气体的一小部分(约2%)。大多数气体嵌入宇宙丝中,并以热热层间培养基的形式存在。绘制其分布不仅对于理解复杂的天体物理过程至关重要,例如活跃的银河核和超新星的猛烈释放能量,而且对于揭示了宇宙中最深刻的奥秘,包括与重力,暗物质和宇宙膨胀有关的宇宙。t
出生于核心偏离超新星的后期,中子星在实验室中难以繁殖的密度和温度的特殊条件下包含物质。近年来,中子星观察已开始在高密度模型的高密度制度中对强烈相互作用物质的本质产生新的见解。同时,手性有效场理论已发展为一个强大的框架,用于研究中等密度恒星中的中等密度制度中具有序列不确定性的核物质特性。在本文中,我们回顾了手性有效野外理论的最新发展,并将重点放在多体扰动理论上,作为计算有效的工具,用于计算热和密集核物质的性质。我们还证明了有效的现场理论如何在核理论预测,核实验和对国家核方程的观察性约束之间进行统计学上的比较。
了解致密强子物质的行为是核物理学的一个核心目标,因为它决定着超新星和中子星等天体物理物体的性质和动力学。由于量子色动力学 (QCD) 的非微扰性质,人们对这些极端条件下的强子物质知之甚少。在这里,格点 QCD 计算用于计算热力学量和 QCD 状态方程,这些方程发生在具有受控系统不确定性的广泛同位旋化学势范围内。当化学势较小时,与手性微扰理论一致。与大化学势下的微扰 QCD 进行比较,可以估计超导相中的间隙,并且该量与微扰测定结果一致。由于同位旋化学势的配分函数 μ I 限制了重子化学势的配分函数 μ B ¼ 3 μ I = 2 ,这些计算还首次在很宽的重子密度范围内对对称核物质状态方程提供了严格的非微扰 QCD 界限。