[1]ŚwiąderK,Marczewska MJF。在属于EIT区域创新计划的国家中,在食品行业的新产品开发中使用感官评估的趋势。2021; 10(2):446。[2] Proserpio C,Bresciani A,Marti A,Pagliarini EJF。豆类面粉或麸皮:可持续的,富含纤维的小吃的成分?2020; 9(11):1680。[3] Huang X,Liu H,Ma Y,Mai S,Li CJF。挤出对淀粉分子降解,秩序 - 疾病结构过渡和消化率的影响 - 综述。2022; 11(16):2538。[4] Cardello AV,Llobell F,Giacalone D,Chheang SL,Jaeger SRJF。植物性食品的消费者偏好细分:产品类别的作用。2022; 11(19):3059。[5] Fathi M,Ghobakhloo MJS。在行业中实现大规模定制和制造可持续性4.0背景:一种新型的启发式算法,用于植物材料供应优化。2020; 12(16):6669。[6] Mounir S,Téllez -PérezC,Sunooj KV,Allaf KJJOTS。质地和颜色特征的肿胀干燥到Zaghloul日期零食:即时控制压降过程的手术参数的影响。2020; 51(2):276-89。[7]GłuchowskiA,Czarniecka-Skubina E,Kostyra E,Wasiak-Zys G,Bylinka KJF。感觉特征,消费者对经典,分子和注释食品的情感。2021; 10(1):133。[8] Bolhuis DP,Forde CGJTIFS,技术。将食物纹理应用于中度口服处理行为和能量摄入量。2020; 106:445-56。
摘要。- 目标:ATG14作为一种自动相关的蛋白质,已被证明通过调节细胞自噬来体现在肿瘤的进展中。我们旨在探索肝细胞癌(HCC)及其可能的分子机制中的ATG14水平。患者和方法:通过定量实时聚合酶链链(QRT-PCR)检查HCC组织和细胞系中的ATG14水平(QRT-PCR),并通过临床信息分析分析ATG14表达与临床参数之间的关系。分别通过进行细胞计数KIT-8(CCK-8)和Tran-Swell检验来评估ATG14对HCC细胞增殖和侵入性的影响。我们使用生物信息学分析和体外细胞实验进一步探讨了ATG14作用的潜在机制。结果:我们的数据表明,HCC组织和细胞系中ATG14水平异常增强,这预测了HCC患者的预后不佳。ATG14的下调标记为HCC细胞的增殖和迁移能力。 生物信息学分析表明,XIST可以通过结合多个miRNA(miR-195-5p,miR-497-5p,mir-424-5p和mir-16-5p)来调节ATG14。 此外,通过升高ATG14的表述,可以从ATG14和ATG14和XIST可以调节HCC的开发的可能机械性中来自动噬。 结论:总而言之,我们的数据预先验证了ATG14水平在HCC组织和细胞系中异常呈现,这预示了HCC患者的预后较差。ATG14的下调标记为HCC细胞的增殖和迁移能力。生物信息学分析表明,XIST可以通过结合多个miRNA(miR-195-5p,miR-497-5p,mir-424-5p和mir-16-5p)来调节ATG14。此外,通过升高ATG14的表述,可以从ATG14和ATG14和XIST可以调节HCC的开发的可能机械性中来自动噬。结论:总而言之,我们的数据预先验证了ATG14水平在HCC组织和细胞系中异常呈现,这预示了HCC患者的预后较差。
摘要北极海浪气候正在经历由于海冰撤退而发生的巨大变化。本研究介绍了北极区域波气候的模拟,该气候对应于五个CMIP5(耦合模型对比项目阶段5)历史模型(1975-2005)和RCP8.5场景未来(2081-2100)周期。年度最大波动高度预计将增加高达6 m的近海,并且是沿某些海岸线的1979 - 2005年值的两到三倍,因为波浪越来越暴露于那里的秋季风暴。大西洋与北极波气候之间的连接预计会因膨胀影响增加而加强。波动方向的变化似乎也表明Beaufort高度弱化,这是由于西方北极地区极端条件的平均波动方向的逆时针旋转所示。波浪条件的预计变化导致波动驱动的侵蚀和沿北极海岸线的淹没潜力的普遍增加。可能会预计危险的极端波事件将变得更加频繁,更激烈。例如,在Beaufort海岸线中,在历史(1979– 2005年)的气候下,一度曾经是20年的事件预计将平均发生在2081 - 2100年期间每2-5年一次。这是一个紧迫的问题,因为它影响了许多北极沿海社区,以及现有和新兴的北极基础设施和活动,其中一些人在过去几年中已经遭受了严重的波浪诱导的损害。
微针作为一个多功能药品平台,可以利用该药物在皮肤中和整个皮肤中运送药物。在当前的工作中,聚(N-异丙基丙烯酰胺)(PNIPAM)合成并将其表征为开发生理响应式微针的基于微对药物的药物递送系统的新型材料。通常,该聚合物在较低温度下的膨胀状态和较高温度下更疏水状态之间可逆地过渡,从而实现精确的药物释放。这项研究表明,溶解由PNIPAM制成的微针斑块,结合了Bis-PNIPAM(一种交联聚合物变体)具有增强的机械性能,这可以从微针的较小高度降低(〜10%)中可见。尽管仅使用PNIPAM的微针是可以实现的,但它表现出较差的机械强度,需要包括其他聚合物赋形剂(例如PVA)来增强机械性能。此外,热响应聚合物的结合对针的插入性能没有显着(p> 0.05),因为所有配方都插入了500 µm的所有配方中,将其插入离体皮肤中。Furthering this, the needles were loaded with a model payload, 1,1 ′ -dio ctadecyl-3,3,3 ′ ,3 ′ -tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was moni tored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈ 200 µ m.另外,还发现交联 - PNIPAM(BIS-PNIPAM)制剂仅在4小时后才表现出染料的显着皮肤,与所使用的赋形剂基质无关。在非交联的PNIPAM制剂中不存在此现象,表明BIS-PNIPAM微针中的沉积物形成。总的来说,这项概念证明的研究使我们对使用PNIPAM溶解微对甲的制造的可能性提出了我们的理解,这可以利用,该制造可以用于将纳米颗粒沉积到真皮中,以在皮肤内扩展药物释放。
本文概述了最近提高港口管理龙骨下净空 (UKC) 能力的技术发展。对于进入或离开深度受限港口的大吃水船舶,如果不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。然而,要做到这一点,他必须拥有沿途准确的实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及船舶特定航道的动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关水流、水密度、波浪、涌浪和/或围海冲击的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:即时预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态吃水预测系统;现代水文测量系统(如浅水多波束和侧扫声纳系统);以及现代电子海图系统(及其支持的快速更新服务)。本文讨论了需要对这些系统进行哪些进一步改进,才能使有效的 UKC 管理成为现实。
关于Doc Te Anau团队的人员约有60名永久员工,在夏季,我们的员工人数膨胀到100多人。我们的核心(全年)生物多样性团队包括八个项目主管,四名高级护林员,两名主管,五个游侠职位,以及一个管理我们生物多样性团队的主要护林员。我们还有许多随便的员工来支持我们的工作。除此之外,我们的团队还拥有季节性的游侠位置,可以在夏季高峰期支持我们的大部分野外工作。季节性工作人员定期乘汽车,船和直升机前往菲德兰最偏远,最壮观的地方,因为我们的团队在整个夏季都从事各种各样的野外工作。这为季节性工作人员提供了在感兴趣领域发展和磨练新技能的机会。季节性人员得到了我们的两位主管的支持。尽管我们的许多生物多样性工作都在该领域,但作为所有生物多样性角色的一部分,需要进行一些行政工作。这包括健康和安全义务,数据输入以及前旅行准备或清理。我们很荣幸能够将专注于团队合作的文化。te anau地区的地点管理Te-Rua-O-Te-Moko/Fiordland国家公园及周边地区。今天,菲尔德兰(Fiordland)覆盖了超过120万公顷的山脉,森林和开放式山谷。这是一个壮观的办公室,可以在山上和菲奥德兰(Fiordland)森林深处的离岸岛屿上工作的生物多样性团队。当他们不在现场时,生物多样性团队总部位于Te Anau湖海岸的Te Anau办公室。我们的办公室拥有一些独特的工作场所机会,例如:
本文概述了最近的技术发展,这些技术提高了管理港口龙骨下间隙 (UKC) 的能力。大吃水船舶进入或离开深度受限港口时,如果不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。但是,要做到这一点,他必须拥有沿途准确的实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及特定于船舶的航道动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关洋流、水密度和波浪、涌浪和/或围海冲击的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:现在预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态吃水预测系统;现代水文测量系统(如浅水多波束和侧扫声纳系统);以及现代电子海图系统(及其支持的快速更新服务)。本文讨论了需要对这些系统进行哪些进一步改进才能使有效的 UKC 管理成为现实。
本文概述了最近改进港口龙骨下净空 (UKC) 管理能力的技术发展。如果大吃水船舶进出深度受限的港口时不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。但是,要做到这一点,船长必须拥有沿航线的准确实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及船舶特定航道的动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关水流、水密度和波浪、涌浪和/或围海的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:即时预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态
2 溶液计算的解决方案 1) D5W 溶液 (5% 葡萄糖,葡萄糖 = 葡萄糖) 葡萄糖的分子量 = 180。 任何计算问题中都会提供此信息。 ① 将百分比转换为摩尔浓度:5% 葡萄糖溶液。5g 葡萄糖 x 1000 毫升 x 1 摩尔葡萄糖 = 0.278 摩尔/升,或 0.278 M 葡萄糖溶液。100 毫升 1.0 升 180g 葡萄糖 ② 将摩尔浓度转换为渗透压:问自己,当这种物质溶解在水中时会产生多少粒子。对于葡萄糖,虽然它可溶于水,但即使溶于水,它也不会在水中电离,因此葡萄糖溶液的摩尔浓度等于溶液的渗透压。0.278 M 葡萄糖 = 0.278 OsM 葡萄糖溶液。 ③ 将OsM换算为mOsM,并说明溶液的渗透压:将OsM乘以1000,换算为mOsM(毫渗透压)。因此,0.278 OsM葡萄糖x 1000 = 278 mOsM葡萄糖溶液。该溶液低于体液等渗范围295至310 mOsM,因此该溶液为低渗性,细胞在这种溶液中会肿胀并裂解。2)盐溶液(1.3%NaCl)NaCl的分子量= 58.5。①将%换算为摩尔浓度:1.3%NaCl溶液。1.3g葡萄糖x 1000 ml x 1摩尔NaCl = 0.222摩尔/升,或0.222 M NaCl溶液。 100 毫升 1.0 升 58.5 克 NaCl ② 将摩尔浓度转换为渗透压:问问自己,当这种物质溶解在水中时会产生多少粒子。氯化钠 NaCl 是一种具有离子键的盐,因此在溶液中电离形成两个粒子 Na + 和 Cl - 。这意味着渗透压 NaCl 是 NaCl 溶液摩尔浓度的 2 倍。
本文概述了最近提高港口管理龙骨下净空 (UKC) 能力的技术发展。对于进入或离开深度受限港口的大吃水船舶,如果不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。然而,要做到这一点,他必须拥有沿途准确的实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及船舶特定航道的动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关水流、水密度、波浪、涌浪和/或围海冲击的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:即时预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态吃水预测系统;现代水文测量系统(如浅水多波束和侧扫声纳系统);以及现代电子海图系统(及其支持的快速更新服务)。本文讨论了需要对这些系统进行哪些进一步改进,才能使有效的 UKC 管理成为现实。