。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 9 月 6 日发布。;https://doi.org/10.1101/2022.09.05.506134 doi:bioRxiv 预印本
光合蓝藻可在生物技术中用作环境可持续的细胞工厂,将二氧化碳转化为多种生物化学物质。然而,缺乏可用于精确和动态控制基因表达的分子工具,阻碍了代谢工程,并导致产品滴度低。光遗传学工具能够以高可调性和可逆性实现光调节的基因表达控制。到目前为止,它们在蓝藻中的应用有限,物种之间的可转移性仍不清楚。在本研究中,我们在聚球藻 PCC 7002 中表达了蓝光抑制的 YF1/FixJ 和绿/红光响应的 CcaS/CcaR 系统,并使用 GFP 荧光测定和 qRT-PCR 表征了它们的性能。非蓝藻来源的 YF1/FixJ 系统表现出较差的性能,最大动态范围为 1.5 倍,尽管采取了几个步骤来改进这一点。相比之下,源自蓝藻 Synechocystis sp. PCC 6803 的 CcaS/CcaR 系统对光波长和强度反应良好,在绿光照射 30 分钟后观察到蛋白质荧光输出增加 6 倍。监测 GFP 转录水平使我们能够量化转录激活和失活的动力学,并测试多个绿光/红光和光/暗循环对系统性能的影响。最后,我们通过对 pCpcG2 输出启动子进行有针对性的遗传修饰,提高了绿光下 CcaS/CcaR 系统的活性。本研究详细描述了 Synechococcus sp. PCC 7002 中 CcaS/CcaR 系统的行为,并强调了跨物种转移光遗传学工具的复杂性。
摘要:基因组精简是微生物进化过程中的自然过程,已成为生成理想底盘细胞用于合成生物学研究和工业应用的常用方法。然而,由于基因操作非常耗时,系统性基因组减少仍然是蓝藻生成此类底盘细胞的瓶颈。Synechococcus elongatus PCC 7942 是一种单细胞蓝藻,是系统性基因组减少的候选者,因为其必需基因和非必需基因已通过实验确定。本文报告,23 个超过 10 kb 的非必需基因区域中至少有 20 个可以被删除,并且可以实现这些区域的逐步删除。生成了一个七重缺失突变体(基因组减少了 3.8%),并研究了基因组减少对生长和全基因组转录的影响。在祖先三重至六重突变体( b 、 c 、 d 、 e1 )中,与野生型相比,上调的基因数量越来越多(最多 998 个),而在七重突变体( f )中上调的基因数量略少(831 个)。在来自五重突变体 d 的另一个六重突变体( e2 )中,上调的基因数量要少得多(232 个)。在本研究的标准条件下,突变体 e2 的生长率高于野生型、e1 和 f 。我们的结果表明,大量减少蓝藻基因组以生成底盘细胞和进行实验进化研究是可行的。
本研究研究了温度对两种蓝藻:来自北极地区的假鱼腥藻属和来自热带地区的聚球藻属的生长和生化组成的影响。蓝藻分离物在3个不同的温度下培养:4±2℃、15±2℃和25±2℃。假鱼腥藻属在4±2℃、15±2℃和25±2℃下的生长速率分别为1.61天 -1 、1.62天 -1 和1.53天 -1 ,倍增时间分别为0.11、0.18和0.08天。聚球藻属的生长速率略低。在4±2℃、15±2℃和25±2℃条件下,生长速率分别为0.65 day -1 、0.94 day -1 和1.06 day -1 ,倍增时间分别为0.003、0.07和0.25 d。Pseudanabaena sp.在4±2℃、15±2℃和25±2℃条件下的总碳水化合物分别为207.16±10.03 mg/L、329.57±189.65 mg/L和63.32±41.02 mg/L。同温度下,Synechococcus sp.的总碳水化合物含量为14.44±10.03 mg/L。分别为 269.44±81.29 mg/L、321.15±73.31 mg/L 和 1556.84±243.38 mg/L。这表明聚球藻的总碳水化合物含量高于假鱼腥藻。在 4±2°C、15±2°C 和 25±2°C 下,假鱼腥藻的总蛋白质含量分别为 5.59±0.09 mg/L、5.23±0.21 mg/L 和 4.34±0.47 mg/L。同时,对于聚球藻,总
[4] Gibson B, Wilson DJ, Feil E 等人。野生环境中细菌倍增时间的分布。Proc Biol Sci, 2018, 285: 20180789 [5] Yu J, Liberton M, Cliften PF 等人。Synechococcus elongatus UTEX 2973,一种利用光和二氧化碳进行生物合成的快速生长蓝藻底盘。Sci Rep, 2015, 5: 8132 [6] Paddon CJ, Westfall PJ, Pitera DJ 等人。强效抗疟药青蒿素的高水平半合成生产。Nature, 2013, 496: 528-32 [7] Lin MT, Occhialini A, Andralojc PJ 等人。一种更快的 Rubisco,具有提高作物光合作用的潜力。 Nature, 2014, 513: 547-50 [8] Bailey-Serres J, Parker JE, Ainsworth EA 等. 提高作物产量的遗传策略。Nature, 2019, 575: 109-18 [9] Gleizer S, Ben-Nissan R, Bar-On YM 等. 转化大肠杆菌从二氧化碳生成所有生物质碳。Cell, 2019, 179: 1255-63 [10] Chen FYH, Jung HW, Tsuei CY 等. 将大肠杆菌转化为仅靠甲醇生长的合成甲基营养菌。Cell, 2020, 182: 933-46 [11] Kaneko T, Sato S, Kotani H 等.单细胞蓝藻Synechocystis sp. 菌株 PCC6803 的基因组序列分析。II. 整个基因组的序列测定和潜在蛋白质编码区的分配。DNA Res,1996,3:109 [12] van Alphen P、Najafabadi HA、dos Santos FB 等人。通过确定其培养的局限性来提高 Synechocystis sp. PCC 6803 的光自养生长率。Biotechnol J,2018,13:e1700764 [13] Sheng J、Kim HW、Badalamenti JP 等人。温度变化对台式光生物反应器中 Synechocystis sp PCC6803 的生长率和脂质特性的影响。 Bioresour Technol, 2011, 102: 11218-25 [14] 张胜山, 郑胜南, 孙建华, 等. 通过便捷引入 AtpA-C252F 突变快速提高蓝藻细胞工厂的高光和高温耐受性。Front Microbiol, 2021, 12: 647164 [15] Ungerer J, Lin PC, Chen HY, 等. 调整光系统化学计量和电子转移蛋白是蓝藻 Synechococcus elongatus UTEX 2973 快速生长的关键。Mbio, 2018, 9: e02327-17 [16] Wlodarczyk A, Selao TT, Norling B, 等. 新发现的 Synechococcus sp. PCC 11901 是一种可高产生物量的强健蓝藻菌株。Commun Biol, 2020, 3: 215 [17] Jaiswal D, Sengupta A, Sohoni S 等人。从印度分离的一种强健、快速生长且可自然转化的蓝藻 Synechococcus elongatus PCC 11801 的基因组特征和生化特性。Sci Rep, 2018, 8: 16632 [18] Jaiswal D, Sengupta A, Sengupta S 等人。一种新型蓝藻 Synechococcus elongatus PCC 11802 与其邻居 PCC 11801 相比具有不同的基因组和代谢组学特征。Sci Rep, 2020, 10:
美国宇航局的 PACE 卫星的海洋颜色仪 (OCI) 可探测高光谱范围内的光,这为科学家提供了区分浮游植物群落的新信息——这是美国宇航局最新的地球观测卫星的独特能力。OCI 发布的第一张图像于 2024 年 2 月 28 日在南非沿海的海洋中识别出两种不同的微小海洋生物群落。该图像的中央面板显示粉红色的聚球藻和绿色的微型真核生物。该图像的左侧面板显示了海洋的自然色视图,右侧面板显示了叶绿素 a 的浓度,叶绿素 a 是一种用于识别浮游植物存在的光合色素。图片来源:NASA
为了增强蓝细菌的生长元有关弹性菌的生长,本研究使用共培养进行了直接筛查氰基细菌生长细菌(CGPB)的直接筛查。分离出四个新型CGPB菌株并在系统发育上鉴定出来:Rhodococcus sp。AF2108,Ancylobacter sp。 GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108,Ancylobacter sp。GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。GA1226,Xanthobacter sp。af2111和Shewanella sp。OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。OR151。与最有效的CGPB菌株Rhodococcus sp。af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108。这些结果归因于正向散射和叶绿素荧光强度的增加。新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。
Shinjinee Dasgupta博士完成了博士学位。 2013年来自西孟加拉邦加尔各答的印度化学生物学研究所 -完成博士学位后,达斯古普塔(Dasgupta)博士加入了孟买印度理工学院,成为一名机构博士后研究员,她专注于p53的淀粉样蛋白形成及其在癌症启动中的影响。Dasgupta博士是“淀粉样细胞系转化”的专利持有者,并在众所周知的国际期刊(例如自然细胞死亡和分化)中发表了手稿。2017年,Dasgupta博士还曾在DBT PAN IIT中心工作,担任IIT孟买化学工程系的高级科学家。 ,她通过使用合成生物学技术进行工程微生物来生产生物燃料和平台化学品。 她在著名的期刊上发表了几本手稿,例如生物技术的进步,生物燃料的生物技术和科学报告。 DASGUPTA博士还对“使用重组Synechococcus SP进行琥珀酸酯的光生生产方法”提出了另一项专利。 2019年,达斯古普塔博士被生物技术部和英国惠康信托基金会授予了著名的DBT/Wellcome Trust India Alliance奖学金。 她目前的研究重点是了解蛋白质错误调节和聚集在癌症疾病中的作用。 特别是她正在研究p53淀粉样蛋白形成如何导致癌症进展和转移。 她还参与了筛查抗聚集剂的治疗人类恶性肿瘤。2017年,Dasgupta博士还曾在DBT PAN IIT中心工作,担任IIT孟买化学工程系的高级科学家。,她通过使用合成生物学技术进行工程微生物来生产生物燃料和平台化学品。她在著名的期刊上发表了几本手稿,例如生物技术的进步,生物燃料的生物技术和科学报告。DASGUPTA博士还对“使用重组Synechococcus SP进行琥珀酸酯的光生生产方法”提出了另一项专利。2019年,达斯古普塔博士被生物技术部和英国惠康信托基金会授予了著名的DBT/Wellcome Trust India Alliance奖学金。她目前的研究重点是了解蛋白质错误调节和聚集在癌症疾病中的作用。特别是她正在研究p53淀粉样蛋白形成如何导致癌症进展和转移。她还参与了筛查抗聚集剂的治疗人类恶性肿瘤。
摘要 蓝藻是一种光合生物,在碳循环中发挥重要作用,是很有前途的生物生产底盘。在这里,我们从独特的海洋环境中分离出两种具有 4.6Mbp 基因组的新型蓝藻,UTEX 3221 和 UTEX 3222,这些蓝藻的 CO₂ 自然升高。我们描述了这两种分离物的完整基因组序列,并重点研究了 UTEX 3222(因为它在液体中浮游生长),描述了与生物技术相关的生长和生物量特性。UTEX 3222 在固体培养基上超过了其他快速生长的模型菌株。它可以在液体培养基中每 2.35 小时翻一番,并在批量培养中生长到高密度(>31 g/L 生物量干重),几乎是最近报道的高密度生长的 Synechococcus sp. PCC 11901 的两倍。此外,UTEX 3222 易于下沉,比其他快速生长的菌株沉降速度更快,这表明收获 UTEX 3222 生物质具有良好的经济效益。这些特性可能使 UTEX 3222 成为海洋二氧化碳去除 (CDR) 和 CO₂ 光合生物生产的有力选择。总体而言,我们发现在自然 CO₂ 升高的环境中进行生物勘探可能会发现具有独特特征的新型 CO₂ 代谢生物。
提取高分子量(HMW)DNA进行长读测序,几乎没有碎片和高纯度是从蓝细菌物种中获取的。在这里,我们描述了一种使用Promega的向导R○HMW DNA提取试剂盒从两个蓝细菌物种中获取高分子量DNA的修改方法。套件中使用的协议是“ 3.D。从革兰氏阳性和革兰氏阴性细菌中分离HMW DNA”方案。在协议中的关键步骤中,我们建议除去细胞碎片的挥之不去的残留物,例如蓝细菌物种的粘液层,以防止其粘在产生的DNA颗粒上。此自定义的修改是在步骤11和12之间进行的,并称为METIS(最大化提取,转移异丙醇步骤)。此步骤大大减少了剩余的粘液层,如果保留将粘贴在DNA上,并使DNA不适合敏感的下游下一代测序,例如PACBIO测序。该方案已用于组装来自蓝细菌的两个基因组(Sychococcussp。和微囊孢子虫),一个来自革兰氏阴性细菌,lacibacter。它还允许在不使用有毒化学物质(例如苯酚)的情况下快速提取HMW DNA,而无需购买额外的试剂。