1 Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India 2 Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy) Tirupati, India 3 Department of Pharmaceutical Analysis, Annamacharya College of Pharmacy, RAJAMPET-516126,印度安得拉邦4 4主要科学家,Cervel Therapeutics,222 Jacobs St. St. Suite 200,马萨诸塞州波士顿,马萨诸塞州波士顿02141,美国5 Vishwakarma University,Pune-48,Pune-48,Maharashtra,印度Maharashtra,印度MAHARASHTRA,印度6号,Neem al neem al neem and rafles,Rafra and rafla 301705,印度7七山药学院(自治)的药物系
生物活性天然产品一直是化学生物学新型生物学功能的重要指标。同时,他们推动创新推进合成有机化学。该讲座将说明几个案例研究,例如微生物果蝇甲烷酸,藻类生长因子thallusin和源自源自海洋毒素jasplakinolide的细胞骨架照片开关,以证明与化学生物学一起使用新颖的工具化合物,可以证明与化学生物学合成如何能够与众不同。
聚合条件:溶剂:水(35毫升),压力:20 bar,发起者:硫酸钾(KPS),表面活性剂:五氟氯辛酸铵酸铵盐(APFO)(启动器浓度为10倍),速度:750 rpm; A来自GPC(DMF,40 O C,PS标准,RI检测器)(ɖ:多分散指数); b来自DSC:加热和冷却周期从30到200 O C,10 O C/min。(T M:熔化温度和T C:结晶温度); C使用以下公式从1 H NMR确定:[ʃ2.92ppm/(ʃ2.92ppm +ʃ2.26ppm)] x 100; d使用以下公式46:f(β)=aβ /(1.3aα +aβ)d ftir d;其中α和Aβ分别对应于763和840 cm -1频段的FTIR光谱中的吸收率; E来自FTIR(CM -1):α763,β840和γ1233。
酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。
与摩洛哥当局的斗争和棚户城的扩散仍然是一个至关重要的挑战,为了改善城市的城市结构并在2030年之前实现可持续发展目标。私营部门参与不合标准住房管理的参与加速了项目,以恢复和减少棚户区,并翻新面临崩溃危险的社区。到2025年,该行业的新投资将集中在卡萨布兰卡 - 塞塔特,马拉喀什 - 萨菲,丹吉尔·塞蒂亚 - 霍西马,fès-hokeima,fès-meknès和laâyoune-sakia el hamra的区域,以增强城市发展和建立吸引人的贡献的贡献的目标,以促进贡献的贡献。人口的福祉和社会融合。
抽象的深度学习模型现在是现代音频综合的核心组成部分,近年来它们的使用已大大增加,从而导致了高度准确的多个任务系统。但是,这种对质量的追求以巨大的计算成本产生了巨大的能源消耗和温室气体的排放。这个问题的核心是科学界用来比较各种贡献的标准化评估指标。在本文中,我们建议依靠基于Pareto最优性的多目标度量,该指标同样考虑模型的准确性和能耗。通过将我们的度量应用于生成音频模型的当前最新技术,我们表明它可以逐渐改变结果的重要性。我们希望提高人们对高质量模型的能源效率的需求,以便将计算成本放在深度学习研究重点的中心。
天然产物Eugenol 1用作合成化合物4的起始材料(方案1)。所有中间体2 - 3均使用文字中提到的技术产生,并带有较小的Modi cations。28化合物1与乙酸溴乙酸酯在丙酮中存在无水钾含碳酸盐中的碳酸盐中,从而产生2-(4-酰基-2-甲氧氧基)乙酸乙酸乙酯2,然后用乙醇中的2--乙醇中的2-----------------甲氧氧基)在2--(4---乙醇中)的2------------甲基乙酸盐反应。 90%的年龄中有3个。所有用于制备目标分子的介体都通过光谱数据(例如NMR和FTIR)进行了。在乙醇中,化合物3和2,5-己二酮之间的凝结反应在96%的年代中均为2-(4-酰基-2-甲氧基氧基) - N-(2,5-二甲基-1 H-吡咯-1-吡咯-1-吡咯-1-吡咯-1-吡咯-1-基)乙酰胺4。通过NMR(1 H&13 C),FTIR和XRD光谱分析对这种凝结进行了限制。FTIR频谱在1710 cm -1和3460 cm -1处显示出明显的信号,分别分别是特征C] O的存在和NH功能。的确,产品4的1 H NMR揭示了以1.91 ppm((CH 3)2)的屏蔽单元的外观,其质子具有与吡咯环相关的质子。尽管吡咯环的两个对称质子存在于5.59 ppm((CH)2)的化学含中,但由于它们的对称性,它们仅给出一个信号。还可以指出,在10.8 ppm(NH)处的未遮盖单线的外观也被指出。实验结果在表1中报告,而不对称单元如图1带有原子编号方案。在13 C NMR光谱中的10.2、103.59和127.3 ppm处的峰值分别归因于(CH 3)2与吡咯环相连的(CH 3)2,CH - CH与第三级碳和c – N链接到吡咯并碳环的Quaternary Carbons。在100 k的温度下,记录了化合物4、2-(4-酰基-2-甲氧基氧基)-n-(2,5-二甲基-1 h-pyrrol-1-基)乙酰胺的X射线强度数据,该乙酰氨酸含量为
由语言模型提供支持的文本到语音(TTS)的最新进步已在实现自然性和零发音克隆方面表现出了显着的功能。值得注意的是,仅解码器的变压器是该域中的突出体系结构。然而,变形金刚面临着依赖于二次复杂性的挑战,在冗长的序列和资源约束的硬件上阻碍了训练。此外,对于TTS比对的单调性质,它们缺乏特定的感应偏见。作为回应,我们建议用重复的架构替换变压器,并引入专门的交叉注意机制,以减少重复和跳过问题。因此,我们的体系结构可以在长样本上有效训练,并实现最先进的零镜头语音克隆,以相对于可比大小的基线。我们的实现和演示可在https:// github.com/theodorblackbird/lina-speech上找到。索引术语:语音综合,零射击自适应文本到语音,语言建模,线性注意1。简介
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过PEER REVIVE的认证)Preprint preprint the本版本的版权所有者于2025年2月28日发布。 https://doi.org/10.1101/2025.02.26.25322822 doi:medrxiv Preprint