大规模氢产生的进步及其通过电催化水分裂的应用在很大程度上取决于发展高度活跃的廉价且有效的电催化剂的进展,以氧气进化反应(OER),这继续带来重大挑战。在此,我们准备使用嵌入的铁(Fe)和锰(Mn)纳米颗粒的GO@Zif- 67@mnfe,上面是用含有Zeolitic Imidazy框架(ZIF-67)装饰的石墨烯(GO)上的纳米颗粒(GO)。预先准备的GO@ZIF-67@MNFE催化剂表现出显着的电催化活性,低电位的低电势仅为236 mV,目前的密度为10 mA CM - 2,小型TAFEL斜率为55.7 mV dec-1的小型TAFEL斜率为1.0 mV,并且在1.0 M KOH ElectroleTe中可耐用。此外,我们进行了一项系统研究,以使用密度功能理论(DFT)计算来研究ZIF-67,ZIF-67@MN,ZIF-67@FE和ZIF-67@FE和ZIF-67@MNFE的电催化OER活性。实验和DFT计算结果表明,将Fe和MN引入ZIF-67通过减少活化的能量屏障和加速动力学来提高OER性能。这项研究提出了一种有前途的策略和合理的设计方法,用于利用ZIF衍生物进行水分割的多金属催化剂。
中/高渗透合金(MEA/HEA)催化剂已成为理想的候选者,因为它们的多功能催化剂是由于多功能金属成分对增强的催化活性的协同作用。但是,适当的测量元素的便捷准备和筛选以实现高催化性能仍然具有挑战性。在这项工作中,我们通过可行的电沉积法成功合成了一个摩卡库-P MEA电催化剂,用于分裂电催化。对于OER来说,AS制备的MEA表现出了超过276.1 mV(J = 10 mA/cm 2),其TAFEL斜坡为38.3 mV/dec,与她(j = 10 mA/cm 2)的超电势为64.7 mV,以及Tafel Slope的87.7 mv/dec.7.7 mv/dec。在整个水电解细胞中使用,MEA在50 mA/cm 2的高电流密度下达到了近100%的法拉达效率和卓越的稳定性。X射线光电子光谱(XPS)分析验证了高价值CO和MO是OER的最活跃的位点,而在P的存在下,富含电子的Cu是在Mococu-p Mea中造成的。这项研究不仅提供了可行的电沉积策略,可以获得具有较高活性和出色稳定性的MEA催化剂,而且还提供了对MEA催化中活性位点的鉴定的基本灯。
图 5. (a)在 O 2 气氛中经过 20 次循环后,La/WO 3 (0、5、10、20%) 的 LSV 曲线表示的碱性 ORR 活性,(b)10% La/WO 3 的 KL 图显示传输的电子总数,(c)10% La/WO 3 与商业 WO 3 和 20% Pt/C 的比较,(d)La/WO 3 (0、5、10、20%) 的塔菲尔斜率,(e)O 2 饱和气氛中 10% La/WO 3 的 RRDE 电流,(f)10% La/WO 3 上氧还原过程中形成的 H 2 O 2 百分比。
用于电催化水分裂的高级材料对于可再生能源研究至关重要。在这项研究中,我们描述了一个两步反应,以制备由Pt纳米颗粒和MOS 2纳米片组成的氢进化反应(她)的电极。形态和结构的特征是多种技术,包括SEM,TEM,XRD和XPS。详细的电化学特征表明,PT纳米颗粒/MOS 2纳米片/碳纤维电极(2.03 w%pt)在其酸性电解质中表现出极好的催化活性,其超电量为5 mV(Vs.她)。估计相应的Tafel斜率为53.6 mV/dec。稳定性通过长期电势周期和扩展电解确认催化剂的特殊耐用性。â2015 Elsevier Ltd.保留所有权利。
从不同温度下,大麦种子提取物对1M盐酸在1M盐酸中腐蚀的作用是从它们作为绿色抑制剂在清洁和降水过程中的潜在用途的角度研究的。使用50%乙醇/水(VOL)溶液进行提取。使用了两种提取方法:浸泡和超声。通过通过电化学方法(Potentiodynalicallization(Tafel曲线)和电化学耐药性光谱)研究吸附和腐蚀过程来研究抑制剂的抑制作用机制。研究结果没有表明提取方法对抑制行为没有影响,抑制作用作为浓度的函数显示,抑制效率的抑制效率显着提高到浓度为400 ppm,然后在这两种方法中都与其无关。然而,浸泡方法的抑制效率在800 ppm时(87.01%,而超声方法为80%)。对该提取物的抑制机制的研究表明化学吸附的可能性。抑制活性随温度增加。抑制活性随温度增加。
摘要一系列具有SRLAAL配方1/2 m 1/2 O 4(M = M = Mn,Fe,Co)的一系列氧化物已合成,并且已经研究了其电催化活性的一半反应水,氧气裂解的一半反应,氧气进化反应(OER)和氢进化反应(她)。这些分层的氧化物由八面体配位的al/m金属组成,其中八面体被碱土/稀土阳离子分离。在合成的材料中,SRLAAL 1/2 CO 1/2 O 4显示出最佳性能,从Tafel方法评估的OER和她的OER和HE的较低的OER和她的较快反应动力学可以明显看出。通过多种因素的组合来解释SRLAAL 1/2 CO 1/2 O 4的性能,包括CO的较高的电负性引起的债券共价,以及MN和FE的较高的电负性,以及Trivalent Cobalt的良好电子构型。重要的是,电导率研究表明电荷转运与电催化活性之间的相关性,其中最活跃的催化剂还显示出最高的电导率。
摘要:使用水电解的绿色氢的生产被广泛认为是最有前途的技术之一。另一方面,氧气进化反应(OER)在热力学上是不利的,需要显着的超电势才能以足够的速度进行。在这里,我们概述了重要的结构和化学因子,这些因素和化学因子影响了代表性的镍铁氧体改性石墨烯氧化石墨烯电催化剂在有效的水分分裂应用中执行。修饰原始和氧化石墨烯的镍铁素体的活性是根据其结构,形态和电化学性质彻底表征的。这项研究表明,Nife 2 O 4 @Go电极对尿素氧化反应(UOR)和水分分割应用都有影响。Nife 2 O 4 @Go被观察到,当电流密度为26.6 mA -CM -2在1.0 m尿素中,1.0 m KOH,扫描速率为20 mV s -1。为UOR提供的TAFEL斜率为39 mV dec -1,而GC/Nife 2 O 4 @Go电极到达10 mA CM -2 -2
通过简单的合成方法利用基于地球丰富元素的低成本,高活性和鲁棒的氧气进化反应(OER)电催化剂,这对于通过水电解而对绿色水力产生而言至关重要。在这项工作中,Nio,Co 3 O 4和Nico 2 O 4纳米颗粒层具有相同的表面形态,通过简单的喷雾热解方法在相同的沉积条件下制备了相同的表面形态,并且相对研究了其OER活性。在所有这三个电催化剂中,NICO 2 O 4显示了420 mV的最低电位,以驱动基准电流密度为10 mA cm -2和最小的Tafel斜率(84.1 mV dec -1),这些密度与基准标准的商业RUO 2电催化剂的OER性能相当。NICO 2 O 4的高OER活性归因于Co和Ni原子之间电子性质的协同作用和调制,这大大降低了驱动OER活动所需的过电位。因此,据信,通过这种简单方法合成的NICO 2 O 4将是一种竞争性候选者作为工业电催化剂,具有高效率和低成本的大规模绿色氢生产,这是通过水电解产生的。
Chasew叶提取物已被研究为绿色腐蚀抑制剂,以抑制酸性培养基中API 5L X52的腐蚀过程。使用电化学测量(例如塔菲尔极化和电化学阻抗光谱法(EIS))分析了腰果叶的抑制作用。FTIR,多酚含量和植物化学分析来确保腰果叶提取物的化合物。腰果叶提取物的浓度用于电化学测量,即0、100、200、300、400和500 ppm。此外,在电化学测量之前使用了浸入时间变化(0、30和60分钟)。电化学测量结果表明,腰果叶提取物在酸性培养基中有效地作为API 5L X52的绿色腐蚀抑制剂。这种绿色腐蚀抑制剂的性能在500 ppm和60分钟的浸入时间的浓度下为最佳。腰果提取物是混合型抑制剂,因为腐蚀势值移动小于85 mV。由于腰果叶的吸附过程提取分子在API 5L X52钢表面上提取分子,因此表面电阻值的增加和双层电容的减小。
摘要:寻求经济可持续的电催化剂来代替氧气进化反应(OER)中的关键材料(OER)是电化学转化技术的关键目标,在这种情况下,金属有机框架(MOF)作为替代的电活性材料提供了很大的希望。在这项研究中,通过在氮掺杂的石墨烯上生长量身定制的基于Ni-Fe的MOF,成功合成了一系列纳米结构的电催化剂,从而创建了名为MIL-NG-N的复合系统。它们的生长是使用分子调节剂调整的,揭示了该性质的非平凡趋势,这是调节剂数量的函数。最活跃的材料表现出了出色的OER性能,其特征在于1.47 V(vs.RHE)达到10 mA cm -2,低Tafel斜率(42 mV dec -1),稳定性超过0.1 M KOH。这种出色的性能归因于唯一的MOF架构和N掺杂石墨烯之间的协同作用,从而增强了活动位点的量和电子传输的数量。与MOF和N掺杂石墨烯的简单混合物或N掺杂石墨烯上的Fe和Ni原子的沉积相比,这些杂种材料显然表现出了明显的OER性能。