2009 年,德国哈雷马丁路德大学的 Ulla Bonas、Jens Boch、Thomas Lahaye 和 Sebastian Schornack 首次在《科学》杂志上发表了 TAL 代码的发现。5 美国非营利组织 2Blades 基金会与科学家合作,监督专利保护以及研究和商业应用的许可。科学家和 2Blades 共同将生物医学商业化权利和所有研究和试剂使用权利独家授权给 Life Technologies(现为 ThermoFisher),而 2Blades 基金会则负责授权将 TALEN 用于农业植物。2
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。