图3:(a)在2。CVO-QRAM算法从CIPSI迭代以及从基态截断(TGS)中得出的状态产生的状态。使用Qeb-和Qeb-和Qubit-pool近似于基态。(b)在相同目标的迭代上,重叠 - adapt-vqe ansatz的保真度。
坐在陶朗加盆地内,TGS成立了大约2到300万年前(Davis and Healy,1993年)。Tauranga的城市景观具有著名的火山地形,例如Mtaganui山(Pearson,2018)。在火山地层上发现了约6.5千年的Tauranga集团沉积物,以及3.4至7千年的潮间带沉积物(Pearson,2018年,戴维斯(Davis)和希利(Healy),1993年)。沉积物厚度向海洋增加,到海上300米的深度,向西减少(White,2009年)。在陶朗加地区,没有主动映射的故障;仅存在无效的隐藏断层。(Boprc,2023年后Briggs等人al。,2006)。1.2低温地热地热水由《资源管理法》(RMA,1991)指定为温度为30°C或更高的水。TGS有资格作为低温地热系统,在707米的深度下,最高记录的温度约为70°C(Janku-Capova等,2022)。
4间或实验室内的可重复性定义为在不同实验室或在同一实验室使用特定方案(在可重复条件下)在同一实验室获得的两个单个测试结果之间的绝对差异,预计可预期为95%的概率。(经合组织,2005年)。请注意,TGS可能已在此GD完成后发布。
地震特征的紧密燃气砂岩(TGS)储层对于识别有希望的气轴承区是必不可少的。然而,由于TGSS中的复杂微观结构,探索地震中弹性弹性特性的岩石物理显着性很大。同时,砂岩和泥岩的层状结构在准确提取至关重要的紧密砂岩特性方面加剧了困难。提出了一种基于岩石物理的综合框架,以从地震数据中估算TGSS的储层质量。TGSS是使用双孔隙率模型建模的,为计算岩石物理模板提供了用于储层参数估计的实用工具。V p / v S的比率用于通过从电线日志中评估的岩性区分来评估的阈值在目标范围内预测TGS储层的累积厚度。这种方法还促进了更好地捕获TGSS的弹性特性进行定量地震解释。使用基于电线对数分析获得的相关性从P波阻抗中估算了总孔隙率。之后,构建了与估计的总孔隙率集成的三维岩石物理模板,以解释速度比和大量模量的微裂缝孔隙率和气体饱和度。集成框架可以最佳估计主导质量的参数。基于获得的参数提出的指标的结果与气体生产非常吻合,并且可以用于预测有希望的TGS储层。©2023作者。此外,结果表明,考虑微裂纹孔隙率可以更准确地预测高质量的储层,从而进一步验证了所研究区域中提出的方法的适用性。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
前言 这是由武装部队害虫管理委员会 (AFPMB) 发布的一系列技术指南 (TG) 之一。AFPMB 是国防部采购和保障部副部长办公室下属的一个理事会,负责推荐政策和程序、提供指导并协调整个美国国防部 (DoD) 害虫管理相关信息的交流。TG 不是政策文件;它们为国防部害虫管理社区和其他机构提供技术指导。因此,不应将 TG 解释为或引用为政策。国防部害虫管理政策由国防部指令 4715.1E“环境安全和职业健康”、国防部指令 4150.07“国防部害虫管理计划”、其他国防部指令和说明以及实施组件指令、说明或法规提供。TG 和国防部害虫管理政策及其他发布可在 AFPMB 网站上查阅:http://www.acq.osd.mil/eie/afpmb/。请将意见和建议的变更发送至 osd.pentagon.ousd-atl.mbx.afpmb@mail.mil,或传真至 (301) 295-7473,或邮寄至美国陆军驻森林格伦武装部队害虫管理委员会,收件人:战略和信息部主任,2460 Linden Lane,大楼。172,Silver Spring,MD 20910。2021 年 7 月对 TG 4 的修订采纳了新西兰生物安全部边境清关服务处 Steve Gay 先生的意见,以遵守世界卫生组织 (WHO) 最近对飞机灭虫的变更。美国空军、新西兰惠灵顿美国国防武官处作战士官、TSgt Curtis Hoofman 提供了关键协调。最终编辑和协调由 AFPMB 战略与信息部提供。2021 年 5 月的修订版由以下人员提供:特拉华州多佛空军基地第 436 机枪支援大队的 Kenneth R. Barnes 先生;AFPMB 中校 Timothy J. Davis;加利福尼亚州特拉维斯空军基地第 60 机枪支援大队的 Daniel C. Fink 中士;伊利诺伊州斯科特空军基地空中机动司令部总部的 Michael R. Hackler 先生;以及佛罗里达州廷德尔空军基地空军土木工程中心的 Armando L. Rosales 先生。AFPMB 战略与信息部工作人员提供了审批协调和最终编辑。本文档的初始 2018 年版本由 AFPMB 的 CDR Frederick M. Stell 和 Douglas A. Burkett 博士研究和编写。COL Jamie A.AFPMB 的 Blow、Terry L. Carpenter 先生、Leah D. Chapman 少校和 Timothy J. Davis 中校提供了主题专业知识输入、技术编辑和关键协调。佛罗里达州廷德尔空军基地空军土木工程中心的 Armando L. Rosales 先生和 Donald A. Teig 先生以及美国驻澳大利亚堪培拉大使馆国防武官处的 MSgt Abraham Rodriguez 对最终版本做出了重大贡献。
1。根据科学进步,改变监管需求和动物福利的考虑,定期审查了化学物质测试的OECD测试指南。最初的测试指南488在2011年采用。在2013年,采用了修订的指南,以更新:治疗开始时动物的年龄范围;将要收集的生殖道的部分用于精子收集;并且,啮齿动物精子干细胞成为成熟精子并到达尾子肌的正确时间。 在2020年,采用了修订的指南,该指南更新了推荐方案,以分析男性生殖细胞的突变。 目前对测试指南(TG)的修订重点是整合体细胞组织和生殖细胞中突变的分析,并与最近修订的OECD测试指南(TGS)协调进行遗传毒性测试。在2013年,采用了修订的指南,以更新:治疗开始时动物的年龄范围;将要收集的生殖道的部分用于精子收集;并且,啮齿动物精子干细胞成为成熟精子并到达尾子肌的正确时间。在2020年,采用了修订的指南,该指南更新了推荐方案,以分析男性生殖细胞的突变。目前对测试指南(TG)的修订重点是整合体细胞组织和生殖细胞中突变的分析,并与最近修订的OECD测试指南(TGS)协调进行遗传毒性测试。
通信地址:Christina Yau 博士,加利福尼亚大学旧金山分校外科系,美国加利福尼亚州旧金山 94143 HoiSze.Yau@ucsf.edu。贡献者所有作者都已审阅数据分析、审阅或修改了手稿的知识内容、批准了最终发布的版本并同意对工作的所有方面负责。CY、M-OK、MO、MvdN 和 SS 可以访问原始数据。LJE 是手稿的担保人。CY、LJE 和 WFS 构思并监督了这项研究。MO、MvdN、SS、DdC、A-SH、TGS、MdM-M、TH、RG、EP、JST、AG、PH、LM、FF、KS 和 AMDeM 整理数据。MO 和 CY 访问并核实了数据。CY 和 M-OK 正式分析并确认了数据。 DdC、A-SH、EP、JST、AG、PH、LM、FF、KC 和 CY 参与了调查。M-OK 和 WFS 开发了方法和软件。MO、MvdN、JaW 和 SS 提供了行政支持。DdC、A-SH、ML、FR、GSS、TGS、MvS、JeW、MM、MdM-M、SL-T、JCB、MPG、TH、RG、VV、SBE、JEA、JMSB、CC、JD、HE、LaH、LoH、S-JS、DC、AKG、KS、PS、AMDeM、LP、LJvV、LJE 和 WFS 提供了资源。CY 负责数据可视化。CY 和 MO 撰写了初稿。所有作者都拥有所有汇总或分析数据的完全访问权限,并对提交出版的决定负有最终责任。*贡献相同
通信地址:Christina Yau 博士,加利福尼亚大学旧金山分校外科系,美国加利福尼亚州旧金山 94143 HoiSze.Yau@ucsf.edu。贡献者所有作者都已审阅数据分析、审阅或修改了手稿的知识内容、批准了最终发布的版本并同意对工作的所有方面负责。CY、M-OK、MO、MvdN 和 SS 可以访问原始数据。LJE 是手稿的担保人。CY、LJE 和 WFS 构思并监督了这项研究。MO、MvdN、SS、DdC、A-SH、TGS、MdM-M、TH、RG、EP、JST、AG、PH、LM、FF、KS 和 AMDeM 整理数据。MO 和 CY 访问并核实了数据。CY 和 M-OK 正式分析并确认了数据。 DdC、A-SH、EP、JST、AG、PH、LM、FF、KC 和 CY 参与了调查。M-OK 和 WFS 开发了方法和软件。MO、MvdN、JaW 和 SS 提供了行政支持。DdC、A-SH、ML、FR、GSS、TGS、MvS、JeW、MM、MdM-M、SL-T、JCB、MPG、TH、RG、VV、SBE、JEA、JMSB、CC、JD、HE、LaH、LoH、S-JS、DC、AKG、KS、PS、AMDeM、LP、LJvV、LJE 和 WFS 提供了资源。CY 负责数据可视化。CY 和 MO 撰写了初稿。所有作者都拥有所有汇总或分析数据的完全访问权限,并对提交出版的决定负有最终责任。*贡献相同
2020-2022 年的目标(表 1.12.1)构成了后续目标的基础。在制定这些标准的过程中,使用了代表大学组合中大多数结构/空间的原型建筑。这些原型用于使用现有技术(2019 年)准备模型和减排计算。2022-2026 年的目标(表 1.12.2)在绝对能源和温室气体指数方面平均比表 1.12.1 低 8%。2026-2030 年的目标(表 1.12.3)比表 1.12.2 中的目标低 20%。相比之下,这些目标符合多伦多绿色标准 v3,每一步都介于第 3 级和第 4 级之间,并根据校园原型的具体情况进行调整。这将确保多伦多大学保持领导地位,并每四年领先于 TGS 步骤。