B/Phuket/3073/2013 样菌株(B/Singapore/INFTT-16-0610/2016,野生型) 每 0.5 毫升剂量 15 微克 HA** ………………………………………. * 在 Madin Darby 犬肾 (MDCK) 细胞中繁殖 ** 血凝素 该疫苗符合世界卫生组织 (WHO) 建议(北半球)和欧盟对 2021/2022 季节的建议。 Flucelvax Tetra 可能含有微量 β-丙内酯、十六烷基三甲基溴化铵和聚山梨醇酯 80。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 预充注射器中的注射用悬浮液(注射剂)。透明至微乳白色的液体。 4. 临床特点 4.1 治疗适应症 预防成人和 2 岁以上儿童的流感。应按照官方建议使用 Flucelvax Tetra。 4.2 剂量和给药方法 剂量
粘液菌四链硫酸毛乳子是一种广泛扩散的内寄生虫,在鲑鱼鱼中引起寿命肾脏疾病(PKD)。我们开发了一条在硅管道中,以将苔藓味的苔藓植物的转录物与天然脊椎动物宿主的肾脏组织分开,布朗鳟鱼(Salmo trutta)。严格的过滤后,我们构建了一个部分转录组组件T. Bryosalmonae,包含3427个转录本。基于对组装寄生虫转录组和大西洋鲑鱼(Salmo Salar)蛋白质组的同源限制搜索,我们确定了四个蛋白质靶标(内糖糖果酰胺酶,豆科蛋白酶,碳酸性赤铁酶2,胰腺性性硬脂酶2,胰腺脂肪酶相关蛋白2),抗脂肪酶相关的药物2)抗肿瘤。这些蛋白质在寄生虫生物和蠕虫中的早期工作表明,所鉴定的抗寄生虫靶标也代表了针对苔藓乳豆乳杆菌的有前途的化学治疗候选,并加强了已知抑制剂可以在进化较远的生物中有效的观点。此外,我们在中度和严重感染的鱼之间鉴定了差异表达的苔藓乳绿os子基因,这表明寄生虫负荷低的鱼类中苔藓乳豆乳杆菌的孢子虫阶段增加了。总而言之,这项研究为在T. bryosalmonae中的未来基因组研究铺平了道路,并代表了开发针对PKD有效药物的重要一步。
1 凯斯西储大学生物医学工程系,俄亥俄州克利夫兰 44106,2 斯坦福大学神经外科系,加利福尼亚州斯坦福 94035,3 斯坦福大学电气工程系,加利福尼亚州斯坦福 94035,4 VA 医学中心路易斯斯托克斯克利夫兰系,俄亥俄州克利夫兰 44106,5 布朗大学神经科学系,罗德岛州普罗维登斯 02912,6 布朗大学罗伯特 J. 和南希 D. 卡尼脑科学研究所,罗德岛州普罗维登斯 02912,7 VA RR&D 神经修复和神经技术中心,罗德岛州普罗维登斯 02912,8 克利夫兰大学医院医学中心神经外科系,俄亥俄州克利夫兰 44106,9 凯斯西储医学院神经外科系,俄亥俄州克利夫兰 44106,10克利夫兰大学医院医学中心神经内科,俄亥俄州克利夫兰 44106,11 布朗大学工程学院,罗德岛州普罗维登斯 02912,12 麻省总医院神经内科神经技术和神经康复中心,马萨诸塞州波士顿 02114,13 哈佛医学院神经内科,马萨诸塞州波士顿 02114,14 斯坦福大学生物工程系,加利福尼亚州斯坦福 94035,15 斯坦福大学神经生物学系,加利福尼亚州斯坦福 94035,16 斯坦福大学霍华德休斯医学研究所,加利福尼亚州斯坦福 94035,17 斯坦福大学吴仔神经科学研究所,加利福尼亚州斯坦福 94035,以及 18 斯坦福大学 Bio-X 项目,加利福尼亚州斯坦福 94035
摘要:Kiwifruit属于Actinidia属,有54种物种显然在功能上都是外胞菌的。XX/XY型的性别确定因素,具有男性异型剂,独立于倍性水平。最近,Sygi蛋白被描述为女性发育的抑制剂。在本研究中,我们通过针对Sygi基因中的两个不同位点来利用CRISPR/CAS9技术,以在两个四倍体男性辅助中诱导Chinensis var的两个四倍体男性饰品中稳定的基因敲除。chinensis。两种基因型的再生效率分别为58%和73%。尽管尚未能够验证表型对浮动结构的影响,但由于组织培养的奇异果植物需要长时间才能使其振动,但我们获得了两条再生线,表明其基因组的唯一构度固定近来固定,这两种情况都构成了替代构成的构成,这两种情况都构成了构成的基因构成。对两个再生植物的GRNA1基因座的评估导致与单个核苷酸不同的靶向区域不同的次要变体的共同值。可以假定该区域的基因组重复。
四翼(DTAP/IPV)0.5ml包含:•每种0.5 ml剂量的疫苗包含:•纯化的白喉toxoid1不少于30 i.u.•纯化的破伤风毒素不小于40 i.u.• Purified pertussis toxoid (PTxd) 1 25 µg • Purified filamentous haemagglutinin (FHA) 1 25 µg • Inactivated type 1 poliovirus 2 D antigen: 40 units • Inactivated type 2 poliovirus 2 D antigen: 8 units • Inactivated type 3 poliovirus 2 D antigen: 32 units 1.adsorbed on氢氧化铝,水合(A1(OH)3)0.3毫克A1和磷酸铝(A1PO4)0.2毫克A1 2。在Vero细胞中繁殖。具有已知作用的赋形剂:疫苗含有苯丙氨酸和少量乙醇(酒精)(请参阅第4.4节)。有关赋形剂的完整列表,请参见第6.1节。该疫苗可能包含戊二醛,新霉素,链霉素和多染色素B的痕迹(请参阅第4.4节)。
摘要。需要新的登革热疫苗来预防这种全球蔓延的媒介传播疾病。V180 候选疫苗由四种重组可溶性登革热病毒包膜糖蛋白组成,之前已在两项临床试验中对未感染黄病毒的参与者(NCT01477580 和 NCT0093642)的安全性和免疫原性进行了评估。在此,我们报告了一项随机、安慰剂对照、双盲研究,研究了 V180 疫苗在之前接种过由国家过敏和传染病研究所开发的减毒活四价疫苗 (LATV) 的受试者中的安全性和免疫原性(方案 #V180-002 [CIR-301])。该研究旨在评估这种重组亚单位疫苗是否可以增强登革热 LATV 诱导的中和抗体反应。 20 名先前已接种过一或两剂登革热 LATV 的参与者被随机分配接受单剂无佐剂 V180(N = 8)、加 Alhydrogel™(氢氧化铝凝胶,Brenntag Biosector,丹麦腓特烈松)佐剂的 V180(N = 8)或安慰剂(N = 4)。在接种疫苗后第 1、15、28 和 180 天使用斑块减少中和试验测量免疫原性。此外,在接种疫苗后 28 天内使用疫苗接种报告卡评估疫苗安全性(主动和被动的不良事件),并从知情同意时起至接种疫苗后 6 个月的最后一次研究访视记录严重不良事件。研究结果表明,V180 疫苗在这些登革热血清阳性志愿者中通常耐受性良好且具有免疫原性。
在生物基聚酯或聚乙二醇作为生长控制剂的情况下,在温和条件下合成了导电配位聚合物 Ni(tto) 的纳米粒子。使用聚酯时,可以观察到粒子的聚集体,而使用聚乙二醇时则可以获得分散良好的纳米粒子。事实上,当 Ni 2+ /聚乙二醇的重量比为 0.031 时,透射电子显微照片证明分散粒子的尺寸在 3 - 10 nm 范围内。纳米粉末的红外光谱显示 1100 - 1190 cm −1 范围内有两种 CS 拉伸模式,证实了与镍中心配位的四硫代草酸酯配体的存在。在聚乙二醇存在下制备的纳米粉末的室温电导率约为 0.8 S∙cm −1 ,对于四硫代酯基聚合物来说这是一个不错的值。最后,对分散良好的 Ni(tto) 粒子进行磁化率测量,在较大的温度范围内证实了居里-外斯定律。此外,低温测量将证实 Ni(tto) 聚合物链内镍原子之间的链内或链间相互作用。关键词
B/Phuket/3073/2013 样毒株(B/Singapore/INFTT-16-0610/2016,野生型) 每 0.5 毫升剂量 15 微克 HA** ………………………………………. * 在 Madin Darby 犬肾 (MDCK) 细胞中繁殖 ** 血凝素 该疫苗符合世界卫生组织 (WHO) 建议(北半球)和欧盟对 2020/2021 季节的建议。 Flucelvax Tetra 可能含有微量 β-丙内酯、十六烷基三甲基溴化铵和聚山梨醇酯 80。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 预充注射器中的注射用混悬液(注射剂)。透明至微乳白色的液体。 4. 临床特点 4.1 治疗适应症 预防成人和 9 岁以上儿童的流感。应根据官方建议使用 Flucelvax Tetra。
B 1N 2 1.579 1.570 1.582 1.584 1.582 1.585 1.581 1.569 1.575 B 1N 21.556 1.571 1.582 1.555 1.582 1.554 1.581 1.569 1.575 N 2C 3 1.362 1.361 1.365 1.366 1.366 1.367 1.366 1.392 1.372 N 2C 31.379 1.385 1.365 1.377 1.366 1.374 1.366 1.392 1.372 N 2C 6 1.391 1.383 1.380 1.390 1.381 1.389 1.381 1.377 1.383 N 2C 61.364 1.360 1.380 1.367 1.381 1.370 1.381 1.377 1.383 C 3C 4 1.394 1.427 1.429 1.392 1.428 1.391 1.427 1.409 1.421 C 3C 41.421 1.429 1.429 1.420 1.428 1.419 1.428 1.409 1.421 C 4 C 5 1.466 1.391 1.391 1.468 1.389 1.465 1.388 1.396 1.386 C 4 C 5 1.393 1.390 1.391 1.390 1.389 1.390 1.388 1.396 1.386 C 5 C 6 1.387 1.439 1.442 1.389 1.442 1.392 1.441 1.459 1.442 C 5 C 6 1.446 1.438 1.442 1.447 1.442 1.447 1.441 1.459 1.442 C 6 牛顿·米 1.364 1.328 1.330 1.365 1.330 1.364 1.330 1.332 1.330 C 6 牛顿·米 1.306 1.329 1.330 1.305 1.330 1.305 1.330 1.332 1.330 C 4 X 2.051 2.088 2.097 1.847 1.876 1.670 1.718 1.09 1.090 C 4 十 2.093 2.089 2.097 1.878 1.876 1.722 1.718 1.09 1.090
摘要背景/目的:染色体不稳定性是不同类型癌症(包括结直肠癌)进展的一个众所周知的因素。染色体不稳定性导致严重的核型重排和非整倍体。四倍体构成了致癌过程中多倍体/非整倍体级联的中间阶段,四倍体细胞对化疗特别有抵抗力。抑制有丝分裂蛋白 polo 样激酶 1 (PLK1) 是否会阻止四倍体结肠癌细胞的存活尚不清楚。方法:用 siPLK1 转染二倍体和四倍体细胞或用 PLK1 抑制剂 Bi2536 与纺锤体毒药联合处理。通过结晶紫染色和克隆形成测定评估细胞毒性。流式细胞术评估分析了许多细胞凋亡参数和细胞周期阶段。使用 CompuSyn 软件计算了 Bi2536 与紫杉醇、长春新碱或秋水仙碱之间的协同作用。结果:抑制或消除 PLK1 可阻止结肠癌细胞(特别是四倍体细胞)的存活。PLK 抑制引起的细胞死亡是由于有丝分裂滑移,随后激活了细胞凋亡的内在途径。我们进一步证明,用 PLK1 抑制剂和微管聚合抑制剂长春新碱或秋水仙碱(而不是微管解聚抑制剂紫杉醇)联合治疗四倍体结肠癌细胞会产生致命的协同效应。结论:PLK1 抑制与微管靶向化学物质相结合,可作为针对四倍体癌细胞的有效治疗策略。