氢气测试 • 9 次热火测试,主级总时长 302.8 秒 • 最大压力 ~829 psi,最大磁阻 ~7.02,最大推力 5,740 lb f 甲烷测试 • 11 次热火测试,主级总时长 254.2 秒 • 最大压力 ~760 psi,最大磁阻 ~3.65,最大推力 5,662 lb f 总体而言 • 项目完成了 22 个循环,平均时长 ~557 秒
现代卫星平台依靠成熟的电力推进系统来高效利用推进剂。然而,这些系统提供的推力有限,通常只有几百毫牛顿,这限制了它们只能用于长时间机动。高推力执行器对于发射装置分离后的减速、避免碰撞、进入轨道或安全模式必不可少。为了满足这一要求,将冷气推进器集成到机载基础设施中是一种可行的解决方案。AST Advanced Space Technologies GmbH 开发了一种高压冷气推进器,能够使用氮气、氩气、氪气和氙气等标准气体产生超过 2 N 的推力。该推进器可在很宽的压力范围内高效运行,从最大预期工作压力 300 bar 到报废压力 1.5 bar,无需压力调节器。1. 简介
应至少提供两种独立的装置,用于将命令从驾驶室传送到机器处所或控制室内通常控制螺旋桨速度和推力方向的位置。其中一种装置应为机舱电报机,它可在机器处所和驾驶室上提供命令和响应的视觉指示。应提供从驾驶室和机舱到可控制螺旋桨速度或推力方向的任何其他位置的适当通信手段。【见指南】
1北美航空是美国的主要飞机制造商,成立于1928年。在1955年,它形成了Rocketdyne作为一个单独的部门,并于1967年与Rockwell合并,形成了北美罗克韦尔,后来成为Rockwell International。2 A喷气发动机通过压力差而产生推力,排出由化学反应形成的快速移动,通常会用空气燃烧喷气燃料。火箭发动机使用储存的推进剂,燃料和氧化剂产生推力,其反应,通常没有外部空气;火箭发动机可以在空间和气氛中运行。
Onitsuka,Shugo Advanced Energy Materials,国际碳中性能源研究所,京都大学Onitsuka,Shugo Advanced Energy Materials,国际碳中性能源研究所,京都大学
推进意味着推动或驱动物体向前。推进系统由机械动力源和将机械动力转换为推进力的装置组成。航天器推进用于改变航天器和人造卫星的速度。当今大多数航天器都是通过将反作用物质加热到高温并以极高的速度从航天器后部排出来推进的。离子产生的推力称为离子推进。离子推进器或离子驱动器是一种用于航天器推进的电力推进形式。它通过用电加速离子来产生推力。产生的推力很低是可以理解的,这种低推力使离子推进器非常适合太空推进,而不适合将航天器或其同类发射到大气层。离子推进器可分为静电推进器和电磁推进器。离子推进器即使没有运动部件也能产生气流。美国宇航局大规模使用这种看似不可能的装置的一个版本来推进他们的太空探测器。该系统相对于其他系统的优势在于,它只需要电源即可启动,几乎牢不可破。该设备使用的 12000V 电压只能点燃一张薄纸。尽管如此,它不会产生气流,因为它内部没有活动部件。更值得注意的是,它可以用非常容易获得的材料建造,例如管件、钉子和霓虹灯变压器。该设备的部分功能只需高压电源的两极即可实现。
摘要:电推进系统 NanoFEEP 在 UWE-4 卫星上进行了集成和在轨测试,这标志着首次成功演示了 1U CubeSat 上的电推进系统。介绍了推进剂加热过程和不同推力水平下推进系统功耗的在轨特性测量。此外,还描述了基于推力矢量方向对航天器姿态影响的分析。所用的加热器每轨道液化推进剂 30 分钟,功耗为 103 ± 4 mW。在此期间,可以启动相应的推进器。推进系统包括一个推进器头、其相应的加热器、中和器和电源处理单元的数字组件,功耗为 8.5 ± 0.1 mW · µ A − 1 + 184 ± 8.5 mW,并与发射极电流成比例。两个推进器头的推力方向估计与立方体卫星结构中的安装方向成 15.7 ± 7.6 ◦ 和 13.2 ± 5.5 ◦ 角。鉴于 1U 立方体卫星的功率非常有限,NanoFEEP 推进系统是一个非常可行的选择。后续 NanoFEEP 推进器的加热器已经得到改进,因此系统可以在整个轨道周期内启动。
电气接口 I2C、CAN、总线电压 I2C、CAN、总线电压 5.2 6 DOF 推进模块 为了满足当前对更大、更强大的立方体卫星的需求,有时需要六自由度 (6 DOF) 推进能力,GomSpace 可以提供具有定制推力方向的推进系统,每个模块最多 6 个推进器。这种推进系统(通常每个卫星有两个模块,因此有 12 个推进器)旨在沿 3 个正交轴(即 x、y、z 航天器轴)中的每一个提供直接平移推力,并围绕 3 个正交轴中的每一个提供直接旋转推力。这可以实现一系列高度先进的立方体卫星任务,例如自主编队飞行、会合对接、近距离检查等。我们的 6-DOF 推进解决方案基于标准 3U 和 6U 模块,因此具有相似的技术规格。举例来说,下图 2 展示了 ESA 任务 RACE 的 6DOF 推进模块设计。其中两个推力矢量与坐标系中的 Z 轴对齐,而其他四个推力矢量与 X 轴形成 48 度角。