光伏 - 热(PVT)概念是一种降低PV模块温度并共同产生热和电能的新方法。这项研究使用氧化铁(Fe 2 O 3)单纳米流体和氧化钛氧化物(Tio 2 -Fe 2 O 3)杂交纳米氟烯类以0.2%和0.3%的浓度评估PVT系统的热和电气进步。对拟议的单一和杂化纳米流体的效果提出并分析了PVT能量和释放效率。研究结果揭示,将0.3%的TIO TIO 2 -Fe 2 O 3纳米复合材料分散到水中已提高了纳米流体的热导率,将Nusselt的数量提高了90.64%,而Fe 2 O 3纳米粒子可实现31.75%。此外,使用TIO 2- Fe 2 O 3-基于0.3%的基于0.3%的纳米流体,与基于Fe 2 O 3的基于Fe 2 O 3的纳米流体相比,PVT的电效率提高了13%,热效率分别提高了44%,分别显示为12%和33%。此外,使用TIO 2 -FE 2 O 3 -FE 2 O 3型杂化纳米流体增强了PVT的电动效率,使用Fe 2 O 3 nanofluid,增强了约13%。相反,与参考碱流体相比,由于纳米流体密度升高,施用TiO 2 -Fe 2 O 3时,压降最大为62.9%。最终,杂化纳米流体对PVT性能的影响比单纳米流体具有出色的影响。但是,需要进一步研究以探索低压下降的成本效益的杂化纳米流体。
摘要I质子交换膜燃料电池(PEMFC)是一种电化学转化技术,可以通过利用氢能来产生电力和热量。PEMFC的效率很高,工作温度低,并且具有环境友好的性质,因此它强烈支持在日常需求中使用绿色能源。本研究的重点是使用修改后的犯罪方法,水渗液法和光doposis方法用于催化作用。vc和RGO变化是质量变化,第一个变化为0.1 gr pt:0.1 gr tio 2:0.1 gr vc:0.2 gr rgo,第二个0.1 gr pt:0.1 gr tio 2:0.1 gr tio 2:0.15 gr vc:0.15 gr rgo,0.15 gr rgo,第三次0.1 gr pt:0.1 gr pt:0.1 gr tio 2:0.1 gr tio 2:0.2 gr vc:0.2 gr vc:0.2 gr vc:0.2 gr rgo rgo通过循环伏击测试(CV)测试,在读取三个测试样品上的电流电压时获得了良好的结果,其中第三个变化显示了氧化和还原反应的范围。关键字:燃料电池,催化剂,PEMFC,PT/C,二氧化钛,合成,
1. 引言 近年来,由于钙钛矿太阳能电池成本低、效率高、制备简单等特点,吸引了众多研究人员的关注。自从 2009 年 Miyasaka 等人首次报道以来,钙钛矿太阳能电池 (PSC) 技术已经从 3.8% 提升至 25% 左右 [1,2]。基本的钙钛矿太阳能电池由透明导电层(例如氟掺杂氧化锡 (FTO) 或铟掺杂氧化锡 (ITO)、电子传输层、光敏钙钛矿层、空穴传输层以及金属电极)组成。由于电子传输层适用于所有层,因此它对于 PSC 的高效率起着重要作用。TiO 2 是最常用的电子传输层之一,因为它具有多种制备方法,例如旋涂、喷涂、溅射等 [3–5]。除了制备技术之外,TiO 2 结构还存在一些问题,例如氧空位和非化学计量缺陷,尤其是位于 TiO 2 表面的缺陷 [6,7]。这些缺陷阻碍电子流动,导致钙钛矿太阳能电池性能不佳。一些研究人员报道了一些不同的材料如 SnO 2 、 ZnO、CdS 和 WOx 代替 TiO 2 作为电子传输层 [8–11]。尽管 CdS 作为电子传输层还远远不能令人满意,但它可能是改性和钝化 TiO 2 表面的优异界面材料。最近,Hwang 等人报道 CdS 作为介孔 TiO 2 层的改性材料,可提高钙钛矿太阳能电池的稳定性 [12]。Zhao 等人使用 CdS 作为前体溶液的添加剂,观察到复合显著减少 [13]。Dong 等人使用 CdS 作为电子传输层,观察到 PSC 的效率为 16.5% [14]。Wessendorf 等人通过使用 CdS 作为电子传输层,观察到磁滞减小 [15]。Cd 扩散到钙钛矿层导致晶粒尺寸增加,从而提高效率 [16]。Mohamadkhania 等人使用 SnO 2 表面上的 CdS 作为界面改性剂,观察到磁滞减小和效率提高 [17]。Ma 等人表明,在 TiO 2 表面化学沉积 CdS 可将效率从 10.31% 提高到 14.26% [18]。
摘要:对紫外线(〜3.2 eV)和高光生成电荷重组率的独家反应性是纯TIO 2的两个主要缺点。我们结合了N掺杂的石墨烯量子点(N-GQD),形态调节和异质结构约束策略,以合成N-GQD /N-GQD /N掺杂TIO 2 /poped tio tiO tiO tiO popered poped poped poped poped tio g-c 3 n 4纳米管(PCN)纳米管(PCN)综合摄影剂(以g-tpcn表示)。最佳样品(用0.1WT%N-GQD掺杂的G-TPCN(表示为0.1%G-TPCN)表现出显着增强的光吸收,这归因于元素掺杂(P和N),元素掺杂(P和N)的变化,改善了The The The The The The The The The The UpConsConsion效应。此外,内部电荷分离和转移能力的0.1%G-TPCN被显着增强,其载体浓度分别为3.7、2.3和1.9倍N-TIO 2,PCN和N-TIO 2 /PCN(TPCN-1)的载体浓度。这种现象归因于N-TIO 2和PCN之间的Z-Scheme杂结,N-GQD的exclent电子传导能力以及由多孔纳米管结构引起的短传递距离。与N-TIO 2,PCN和TPCN-1相比,在可见光下的H 2生产活性分别增强了12.4、2.3和1.4次,以及其环丙沙星(CIP)降解率分别增加了7.9、5.7和2.9次。优化的表现受益于出色的光自我复杂性和提高的载体分离和迁移效率。最后,提出了CIP的0.1%G-TPCN和五个可能的降解途径的光载体机制。这项研究阐明了多重修饰策略的机制,以协同改善0.1%G-TPCN的光催化性能,并为合理设计新型的光催化剂提供了一种潜在的策略,以进行环境修复和太阳能转换。
(2020 年 2 月 4 日收到;2021 年 4 月 2 日修订;2021 年 4 月 4 日接受) 摘要。本文介绍了一种使用四异丙醇钛作为钛源通过溶胶-凝胶技术生产二氧化钛 (TiO 2 ) 纳米粒子的新合成方法。使用 X 射线衍射 (XRD)、HRTEM、吸收紫外光谱、FTIR 和交流阻抗光谱等多种测量方法分析了合成的纳米粒子。利用 X 射线峰通过 Williamson-Hall 方法计算晶粒尺寸和晶格应变。使用 Scherrer 方程通过 X 射线衍射计算出的晶粒尺寸给出近似尺寸,不能用于测量。发现 TiO 2 纳米粒子具有四方结构,晶体尺寸约为 12 纳米。通过 HRTEM 图像确认了粒度。对纳米粒子的光学研究响应表明,TiO 2 纳米粒子的可能可见吸收峰为 323 nm。讨论了从紫外可见吸收光谱计算出的 TiO 2 纳米粒子的带隙能量 (E g ),带隙为 3.14 eV。FTIR 光谱显示了 Ti-O 网络的振动带。在不同温度下,在 1 至 8 MHz 的频率范围内研究了 TiO 2 纳米粒子的交流电导率特性。发现 TiO 2 纳米粒子的电导率在低角频率区域保持恒定。在不同温度和频率下分析了介电参数。关键词:电导率、介电体、纳米粒子、二氧化钛、结构研究
文章历史:在行业中,加工期间从切割区域中去除热量提出了一个重大挑战。因此,在碳纤维增强聚合物(CFRPS)加工期间,对合理定价和环境安全的冷却剂的需求增加了。这项工作合成并表征了绿色二氧化钛(TIO 2)和碳纳米管(CNT),以创建具有不同比例(9:1、7:3和5:5)的TIO 2 /CNTS纳米复合材料(NC)。研究NCS的稳定性,作为基础油的潜在填充物来创建用于加工碳纤维增强塑料(CFRPS)的纳米油,使用多种分析技术来表征它们,包括Brunauer-Emmett-Teller(BET),高分辨率SEM/EDS,高分辨率SEM/EDS,高分辨率,高分辨率,Xrd,xrd and FIRD。NCS的FTIR光谱表明与C = C和Ti-O键一致的吸收峰,产生分配给TI-O-C和C-O键的峰。由于CNT和TIO 2的一级峰重叠,因此归因于CNT的峰几乎不可见,并且很容易识别鉴定鉴定的CNT。由于其较大的表面积,孔体积和稳定性作为纳米悬浮,TIO 2 /CNT(5:5)提供了与其他NC相比的显着效果:这是利用绿色泰坦尼亚的研究文章的新颖性。这些混合动力NC解决了与单个NC的不可控制的聚集有关的挑战。因此,得出结论,TIO 2 /CNTS NC是潜在的加强基础油中加工的填充剂。
1。最近,由于其低成本,高效率和便捷的制造,钙钛矿太阳能电池对许多研究人员变得更具吸引力。自从宫宫和同事于2009年首次报道以来,钙钛矿太阳能电池(PSC)技术已从3.8%提高到25%左右[1,2]。基本的钙钛矿太阳能电池由透明的导电层组成,例如弗洛林掺杂锡氧化物(FTO)或imper的掺杂锡氧化物(ITO),电子传输层,光敏的钙钛矿层,孔传输层,最后是金属电极。由于对所有层都是有效的,因此电子传输层对于高效率在PSC中起重要作用。tio 2是最常用的电子传输层之一,其各种制造方法(例如自旋涂层,喷涂,溅射等)。[3-5]。独立于制备技术,TIO 2结构包括一些问题,例如氧气空位和尤其位于TIO 2表面上的非化色缺陷[6,7]。那些缺陷可以防止电子流,从而导致钙钛矿太阳能电池性能不佳。一些研究人员报告了一些不同的材料,例如SNO 2,ZnO,CDS和WOX,而不是TIO 2作为电子传输层[8-11]。尽管CD作为电子传输层仍然远非令人满意,但它可能是用于修饰和钝化TIO 2表面的出色界面材料。最近,Hwang等。报道CD作为中孔TIO 2层的修饰材料,导致钙钛矿太阳能电池的稳定性提高[12]。Zhao等。 Dong等。Zhao等。Dong等。Dong等。使用CD作为前体溶液的添加剂,并观察到重组显着降低[13]。使用CD作为电子传输层,观察到PSC的效率为16.5%[14]。Wessendorf等。通过使用CD作为电子传输层[15]观察到滞后的减少。CD扩散到钙钛矿层会导致晶粒尺寸增加,从而提高效率[16]。 Mohamadkhania等。 使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。 ma等。 表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。CD扩散到钙钛矿层会导致晶粒尺寸增加,从而提高效率[16]。Mohamadkhania等。 使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。 ma等。 表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。Mohamadkhania等。使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。ma等。表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。
锂硫 (Li-S) 电池被视为近期下一代锂电池的有希望的候选材料之一。然而,这些电池也存在某些缺点,例如由于多硫化物的溶解导致充电和放电过程中容量衰减迅速。本文成功合成了硫/金属氧化物 (TiO 2 和 SiO 2 ) 蛋黄壳结构,并利用该结构来克服这一问题并提高硫阴极材料的电化学性能。使用扫描电子显微镜 (SEM)、透射电子显微镜 (TEM) 和 X 射线衍射 (XRD) 技术对制备的材料进行了表征。结果表明,使用硫-SiO 2 和硫-TiO 2 蛋黄壳结构后电池性能显著提高。所得硫-TiO 2 电极具有较高的初始放电容量(>2000 mA h g −1 ),8 次充电/放电循环后的放电容量为 250 mA h g −1 ,库仑效率为 60% ,而硫-SiO 2 电极的初始放电容量低于硫-TiO 2 (>1000 mA h g −1 )。硫-SiO 2 电极在 8 次充电/放电循环后的放电容量为 200 mA h g −1 ,库仑效率约为 70%。所得恒电流结果表明硫-TiO 2 电极具有更强的防止硫及其中间反应产物溶解到电解质中的能力。
硅胶橡胶(SIR),一种重要的弹性体,由于其独特的特性而广泛用于生产各种工程和一般产品。尽管具有显着的特性,但基于SIR的产品仍需要抗微生物剂,例如二氧化钛,TIO 2,以消除黑色霉菌问题。仍然,添加该试剂会改变复合材料的加工性以及物理和机械性能。这项研究研究了添加不同TiO 2含量作为填充硅橡胶复合材料的加工性,物理性能和机械性能的影响。使用两圈磨坊制备了20-耐度高温风化(HTV)的爵士,在0.0、0.3、0.6和1.2 wt%的情况下加固。结果表明,以0.3 wt%TIO 2加强的爵士复合材料表现出最佳性能,其拉伸强度为1.49 MPa,突破时伸长率为340.87%,模量为0.664 MPa,Modulus中的100%,Modulus 300%的0.822 MPA和Modulus 500%的0.954 mpa的300%。此性能可以归因于此浓度下TIO 2和硅橡胶颗粒之间的有效交联密度以及有效的相互作用。结构和形态分析进一步证实了结果。因此,可以推断出,用0.3 wt%二氧化钛固化的硅橡胶具有制定需要抗菌特性的有机硅橡胶化合物的潜力。