Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;
在一次非凡的历史事故中,托米塔(Tomita)在1967年的巴吞鲁日会议上分发了他的预印本,在同一会议上,哈格宣布了公共条件。Masamichi Takeaki参加了Baton Rouge会议。不久后,他完成了模块化理论,并通过KMS条件来表征模块化群。
作者单位:新罕布什尔州汉诺威盖泽尔医学院生物医学数据科学系(Nasir-Moin、Bagchi、Wei、MacKenzie、Hassanpour);新罕布什尔州汉诺威达特茅斯学院计算机科学系(Nasir-Moin、Bagchi、Tomita、Wei、Hassanpour);新罕布什尔州黎巴嫩达特茅斯-希区柯克医学中心病理学和实验室医学系(Suriawinata、Ren、Liu);新罕布什尔州黎巴嫩达特茅斯卫生政策和临床实践研究所(Robertson、MacKenzie);新罕布什尔州汉诺威盖泽尔医学院医学系(Robertson、MacKenzie);佛蒙特州怀特河交界处退伍军人事务医疗中心胃肠病学科(Robertson);新罕布什尔州汉诺威盖泽尔医学院社区和家庭医学系(Rees);新罕布什尔州汉诺威盖泽尔医学院流行病学系(Rees,Hassanpour)。
(2013)。 22. A. Zubarev,D. Dragoman,应用。物理。 Lett.104,183110(2014)。 23. A. Zubarev,D. Dragoman,J. Phys. D 47,425302(2014年)。 24. A. Zubarev,国际半导体会议(CAS)文集,109,罗马尼亚锡纳亚(2014 年)。 25. GJ Milburn、S.Schneider、DFV James、Fortschr。物理学 48, 801 (2000)。 26. UL Andersen, G. Leuchs, C. Silberhorn, 激光光子学评论4, 337 (2010)。 27. A. Zubarev、M. Cuzminschi、A. Isar,罗马学院院刊。第20、251页(2019年)。 28. A. Croitoru,I. Ghiu,A. Isar,Rom. Rep. Phys. 72,102 (2020年)。 29. M. Calamanciuc,A. Isar,Rom. J. Phys. 65,119 (2020年)。 30.X.-B. Wang,T. Hiroshima,A. Tomita,M. Hayashi,Phys.报告448,1(2007)。 31. V. H¨andchen、T. Eberle、S. Steinlechner、A. Samblowski、T. Franz、RF Werner 和 R. Schnabel, Nat.
He XD, Goyal RK。CaMKII 抑制使膜超极化并通过关闭肠道平滑肌中的 Cl 电导来阻断氮能 IJP。Am J Physiol Gastrointest Liver Physiol 303:G240–G246,2012 年。首次发表于 2012 年 4 月 26 日;doi:10.1152/ajpgi.00102.2012。— 氮能“慢”抑制连接电位 (sIJP) 的离子基础尚未完全了解。本研究的目的是确定钙调蛋白依赖性蛋白激酶 II (CaMKII) 依赖性离子电导在肠道平滑肌神经肌肉接头处氮能神经传递中的性质和作用。研究在豚鼠回肠中进行。使用改良的 Tomita 浴技术在同一细胞中诱导被动超极化电紧张电位 (ETP) 和因 sIJP 或药物治疗引起的膜电位变化。使用尖锐微电极在同一平滑肌细胞中记录膜电位和 ETP 的变化。在非肾上腺素能、非胆碱能条件下通过电场刺激以及嘌呤能 IJP 的化学阻滞引发氮能 IJP。超极化过程中 ETP 的改变反映了平滑肌中的主动电导变化。氮能 IJP 与膜电导降低有关。CAMKII 抑制剂 KN93(而非 KN92)、Cl 通道阻滞剂尼氟酸 (NFA) 和 K ATP 通道开放剂 cromakalim 使膜超极化。但是,KN93 和 NFA 与膜电导降低有关,而 cromakalim 与膜电导增加有关。在 NFA 诱导的最大超极化之后,未观察到与 KN93 或 sIJP 相关的超极化,表明 Cl 通道信号传导饱和阻断。这些研究表明,抑制 CaMKII 依赖性 Cl 传导可介导氮能 sIJP,从而导致 Cl 传导最大程度关闭。
羟基烷酰甲烷,姜黄素III)(3-5%)一起称为姜黄素(Anand等,2008)。此外,针对姜黄素的几种互变异物(包括酮和烯醇形式)得到了区分,姜黄素受pH和溶液或固态的极性变化的影响(Kawano等,2013)。许多科学研究都支持姜黄素的显着特性,包括抗微生物,抗carcino-genic,抗炎和抗氧化活性(Prasad等人,2014a; Shakibaei等,2014,2014,2007; Shakibaei等,2015)。姜黄素已通过广泛的实验室和临床实验(例如Shakibaei等人)作为抗癌剂良好。(2015)表明,姜黄素在体外增强了5-氟尿嘧啶对结直肠癌细胞系的抗肿瘤活性(Shakibaei等,2015)。癌症干细胞(CSC)具有自我更新,分化和其他干细胞特性的能力,被视为新兴的治疗靶标(Chen等,2013; Subramaniam et al。,2010)。已经发现,作为癌细胞的一小部分癌症干细胞在癌症的起始和进展中起着突出的作用,血管生成,血管生成,侵袭,转移,对癌症的治疗和复发性(Gerger等,2011; Klarmann et al。 Zhao等,2011)。最近,各种癌症干细胞生物标志物,例如CD44,CD133,ALDH1在几种类型的癌症中进行了广泛的研究(Buhrmann等,2014; Klonisch等,2008; Shakibaei等,2014)。在过去的十年中发表的大量研究支持了姜黄素的潜力及其修改形式,可以单独或与其他抗癌剂结合使用几种类型的癌细胞培养物中的CSC(Buhrmann等,2014; Li and Zhang and Zhang,2014; Shakibaei es; shakibaei等,2014)。Cur- curmin对CSC的影响可能与其直接或间接影响自我更新途径,肿瘤形成,肿瘤微环境,酶活性和细胞表面标记的能力有关(Buhrmann等,2014; Li and Zhang,li and Zhang,2014; Shakibaei; shakibaei等,2014)。在多种同工型中表达的CD44糖蛋白参与了许多与癌症所有阶段有关的细胞信号通路(Buhrmann等,2014; Williams等,2013)。因此,CD44已被作为预防癌症,检测,预后和筛查癌症干细胞对各种治疗模型的反应的参数(Blacking,2013; Negi等,2012)。糖蛋白CD133的表达与癌细胞中的干细胞样性质有关。的确,其对癌细胞的表达据报道是预后和预测治疗结果的重要标记(Grosse-Gehling等,2013; Glumac和Lebeau,2018)。酶醛脱氢酶1(ALDH1)可以保护细胞免受氧损伤的影响,并通过将视黄醇转化为视黄酸,参与调节细胞增殖(Huang等,2009)。aldh1被作为人类结肠癌的潜在生物标志物,被用作预后标记(Chen等,2011; Tomita等,2016)。使用姜黄素作为治疗剂受到其生物效率和生物效能感的限制,该生物效率受到大量研究项目的影响。迄今为止从体外和体内研究可用的所有证据都表明,特定的担忧是姜黄素的稳定性和生物利用度较低(Anand等,2007)。然而,更好地了解姜黄素在细胞培养基或人体室中的稳定性(例如,血液,组织器官)是新型治疗发展的重要预先预期,因为姜黄素的浓度与影响生物学系统的能力之间存在牢固的关系。的确,已经开发了几种策略,例如佐剂,脂质体,磷脂复合物,磷脂复合物,纳米颗粒或姜黄素的结构类似物,以克服上述问题(Prasad等,2014b,2014b)。在本研究中,研究了Cur- cur-在体外研究的时间和剂量依赖性对癌症干细胞标志物CD44,CD133和ALDH1的表达的依赖性作用。此外,在不同培养系统中检查了姜黄素和姜黄素的稳定性。