该药物的使用必须有以下之一的支持:FDA 批准的产品标签、CMS 批准的药典、国家综合癌症网络 (NCCN)、美国临床肿瘤学会 (ASCO) 临床指南,或符合 CMS 医疗保险福利政策手册第 15 章要求的同行评审文献。
摘要目的 BRAF 和 NRAS 的基因组变异是恶性黑色素瘤和其他实体瘤的致癌驱动因素。托沃拉非尼是一种在研的口服、选择性、中枢神经系统渗透性、小分子 II 型泛 RAF 抑制剂。这项首次用于人体的 1 期研究探讨了托沃拉非尼的安全性和抗肿瘤活性。方法这项针对复发或难治性晚期实体瘤成年患者的两部分研究包括剂量递增期和剂量扩展期,包括分子定义的黑色素瘤患者群。主要目标是评估每隔一天 (Q2D) 或每周 (QW) 一次给药的托沃拉非尼的安全性,并确定这些方案的最大耐受剂量和推荐的 2 期剂量 (RP2D)。次要目标包括评估抗肿瘤活性和托沃拉非尼药代动力学。结果 149 名患者(Q2D n = 110,QW n = 39)接受了托沃拉非尼治疗。托沃拉非尼的 RP2D 定义为 200 mg Q2D 或 600 mg QW。在剂量扩展阶段,Q2D 队列中的 80 名患者中有 58 名(73%)和 QW 队列中的 19 名患者中有 9 名(47%)出现 ≥ 3 级不良事件。总体而言,最常见的不良事件是贫血(14 名患者,14%)和斑丘疹(8 名患者,8%)。在 Q2D 扩展阶段,68 名可评估患者中有 10 名(15%)出现反应,包括 16 名(50%)未使用过 RAF 和 MEK 抑制剂的 BRAF 突变阳性黑色素瘤患者中的 8 名。在 QW 剂量扩展阶段,17 名可评估的 NRAS 突变阳性黑色素瘤患者未接受过 RAF 和 MEK 抑制剂治疗,未出现反应;9 名患者 (53%) 的最佳反应为病情稳定。400-800 毫克剂量范围内,QW 剂量给药与体循环中托沃拉非尼的最小蓄积相关。结论两种方案的安全性均可接受,未来临床研究首选 RP2D 600 毫克 QW 剂量。托沃拉非尼在 BRAF 突变黑色素瘤中的抗肿瘤活性很有希望,值得在多种环境中继续进行临床开发。ClinicalTrials.gov 标识符 NCT01425008。
BRAF和NRA的抽象目的基因组改变是恶性黑色素瘤和其他实体瘤中的致癌驱动因素。Tovorafenib是一种研究,口服,选择性,CNS-PENETRANT,小分子,II型PAN-RAF抑制剂。这项第一个人类1期研究探讨了Tovorafenib的安全性和抗肿瘤活性。方法对复发或难治性晚期实体瘤的成年患者进行了两部分研究,包括剂量升级阶段和剂量扩张阶段,包括分子定义的黑色素瘤患者。主要目标是每隔一天(Q2D)或每周一次(QW)评估一次Tovorafenib的安全性,并在这些时间表上确定最大耐受性和建议的2阶段剂量(RP2D)。次要目标包括评估抗肿瘤活性和Tovorafenib药代动力学。对149例患者进行了tovorafenib的结果(Q2d n = 110,QW n = 39)。Tovorafenib的RP2D定义为200 mg Q2d或600 mg QW。在剂量扩张阶段,Q2D队列中的80名患者中有58例(73%),QW队列中的19名患者中有9名(47%)发生≥3级不良事件。这些总体中最常见的是贫血(14例,14%)和丘疹性皮疹(8例患者,8%)。在Q2D扩张阶段的68名可评估患者中,有10例(15%)在16例(50%)BRAF突变阳性黑色素瘤中的16例患者中有10例(15%)的反应,其中包括RAF和MEK抑制剂。在QW剂量扩张阶段,NRAS突变阳性黑色素瘤对RAF和MEK抑制剂的可评估患者没有反应。 9名患者(53%)对稳定疾病的反应最佳。QW剂量给药与Tovorafenib在400-800 mg的全身循环中的最小积累有关。结论两种时间表的安全性均可接受,QW以600 mg QW的RP2D剂量为将来的临床研究首选。Tovorafenib在BRAF突变的黑色素瘤中的抗肿瘤活性是有希望的,并且在多种环境中持续临床发育是合理的。clinicaltrials.gov标识符NCT01425008。
BRAF和NRA的抽象目的基因组改变是恶性黑色素瘤和其他实体瘤中的致癌驱动因素。Tovorafenib是一种研究,口服,选择性,CNS-PENETRANT,小分子,II型PAN-RAF抑制剂。这项第一个人类1期研究探讨了Tovorafenib的安全性和抗肿瘤活性。方法对复发或难治性晚期实体瘤的成年患者进行了两部分研究,包括剂量升级阶段和剂量扩张阶段,包括分子定义的黑色素瘤患者。主要目标是每隔一天(Q2D)或每周一次(QW)评估一次Tovorafenib的安全性,并在这些时间表上确定最大耐受性和建议的2阶段剂量(RP2D)。次要目标包括评估抗肿瘤活性和Tovorafenib药代动力学。对149例患者进行了tovorafenib的结果(Q2d n = 110,QW n = 39)。Tovorafenib的RP2D定义为200 mg Q2d或600 mg QW。在剂量扩张阶段,Q2D队列中的80名患者中有58例(73%),QW队列中的19名患者中有9名(47%)发生≥3级不良事件。这些总体中最常见的是贫血(14例,14%)和丘疹性皮疹(8例患者,8%)。在Q2D扩张阶段的68名可评估患者中,有10例(15%)在16例(50%)BRAF突变阳性黑色素瘤中的16例患者中有10例(15%)的反应,其中包括RAF和MEK抑制剂。在QW剂量扩张阶段,NRAS突变阳性黑色素瘤对RAF和MEK抑制剂的可评估患者没有反应。 9名患者(53%)对稳定疾病的反应最佳。QW剂量给药与Tovorafenib在400-800 mg的全身循环中的最小积累有关。结论两种时间表的安全性均可接受,QW以600 mg QW的RP2D剂量为将来的临床研究首选。Tovorafenib在BRAF突变的黑色素瘤中的抗肿瘤活性是有希望的,并且在多种环境中持续临床发育是合理的。clinicaltrials.gov标识符NCT01425008。
1 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院费城儿童医院儿科肿瘤科;2 美国伊利诺伊州芝加哥安与罗伯特 H. 卢里儿童医院;3 澳大利亚新南威尔士州兰德威克悉尼儿童医院儿童癌症中心;4 澳大利亚新南威尔士州悉尼新南威尔士大学洛伊癌症研究中心儿童癌症研究所;5 澳大利亚新南威尔士州悉尼新南威尔士大学临床医学院;6 美国华盛顿特区儿童国家医院;7 丹麦哥本哈根哥本哈根大学医院 - Rigshospitalet 儿科和青少年医学部;8 荷兰乌得勒支马克西玛公主儿科肿瘤中心;9 澳大利亚昆士兰州南布里斯班昆士兰儿童健康医院和卫生服务中心; 10 瑞士苏黎世大学儿童医院肿瘤科;11 美国纽约州纽约市纽约大学朗格尼医学中心;13 澳大利亚维多利亚州墨尔本皇家儿童医院儿童癌症中心;14 澳大利亚南澳大利亚阿德莱德妇女儿童医院迈克尔赖斯血液学和肿瘤学中心;15 澳大利亚阿德莱德南澳大利亚健康与医学研究所;澳大利亚南澳大利亚阿德莱德大学南澳大利亚免疫基因组学癌症研究所;16 美国华盛顿州西雅图西雅图儿童医院癌症和血液病中心;17 德国柏林夏里特大学医学院,柏林自由大学和柏林洪堡大学的企业成员,德国柏林儿童和青少年 LGG HIT-LOGGIC 注册中心; 18 英国泰恩河畔纽卡斯尔大北儿童医院和纽卡斯尔大学癌症中心;19 加拿大魁北克省蒙特利尔大学圣贾斯汀医院儿童神经病学部神经科学系;20 澳大利亚新南威尔士州韦斯特米德悉尼儿童医院网络;21 德国海德堡霍普儿童癌症中心 (KiTZ);22 德国海德堡德国癌症研究中心 (DKFZ) 儿科肿瘤科临床合作部;23 德国海德堡海德堡大学医院儿科肿瘤学、血液学、免疫学和肺病学系;24 德国海德堡德国癌症联盟 (DKTK);25 德国海德堡国家肿瘤疾病中心 (NCT); 26 美国德克萨斯州休斯顿贝勒医学院德克萨斯儿童癌症中心、德克萨斯儿童医院;27 韩国首尔国立大学医学院儿科、首尔国立大学癌症研究所、首尔国立大学儿童医院;28 韩国首尔延世大学卫生系统 Severance 医院韩国;29 英国伦敦大学学院大奥蒙德街儿童健康研究所和大奥蒙德街儿童医院;30 美国密歇根州安娜堡密歇根大学医学院 C.S. 莫特儿童医院;31 以色列拉马特甘舍巴医疗中心儿科血液肿瘤科;32 以色列特拉维夫特拉维夫大学医学院佩塔提克瓦施耐德儿童医疗中心儿科肿瘤科;33 美国密苏里州圣路易斯华盛顿大学圣路易斯医学院圣路易斯儿童医院血液学和肿瘤学分部;34 加拿大魁北克省蒙特利尔蒙特利尔儿童医院 (MCH) 麦吉尔大学健康中心 (MUHC); 35 澳大利亚珀斯儿童医院儿科和青少年肿瘤学和血液学系,以及西澳大利亚大学 Telethon Kids 研究所 Telethon Kids 癌症中心脑肿瘤研究项目,澳大利亚西澳大利亚州珀斯;36 美国犹他州盐湖城初级儿童医院和犹他大学;37 美国马萨诸塞州波士顿丹娜—法伯/波士顿儿童癌症和血液病中心儿科系儿科神经肿瘤学;38 以色列海法 Rambam 医疗园区血液学和肿瘤学系;39 新加坡 KK 妇女儿童医院儿科血液学/肿瘤学服务系;40 美国加利福尼亚州旧金山加利福尼亚大学神经内科、神经外科和儿科系;41 美国加利福尼亚州布里斯班 Day One Biopharmaceuticals; 42 杜克大学,北卡罗来纳州达勒姆,美国加利福尼亚大学神经外科和儿科系,美国加利福尼亚州旧金山市;41 Day One Biopharmaceuticals,美国加利福尼亚州布里斯班市;42 杜克大学,美国北卡罗来纳州达勒姆市加利福尼亚大学神经外科和儿科系,美国加利福尼亚州旧金山市;41 Day One Biopharmaceuticals,美国加利福尼亚州布里斯班市;42 杜克大学,美国北卡罗来纳州达勒姆市
1。Hutchinson Ke等。Clin Cancer Res。 2013; 19(24):6696-6702。 2。 Botton,T。等。 CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Clin Cancer Res。2013; 19(24):6696-6702。 2。 Botton,T。等。 CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。2013; 19(24):6696-6702。2。Botton,T。等。 CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Botton,T。等。CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。CellRep。2019; 29(3):573-588。3。Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Sun Y等。Neuro oncol。2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。2017; 19(6):774-785。4。Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Olszanski等。Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Ann Oncol。2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。2017; 28(Suppl_5):Abstr。4583。5。Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Kilburn L等。Neuro oncol。2022; 24(suppl_7):vii89并介绍了海报。6。Wright K等。Neuro oncol。2020; 22(增刊2):II46和相关的演示。7。提供K等。海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。
BRAF基因组改变是小儿低级神经胶质瘤(PLGG)中最常见的致癌驱动因素。ARM 1(n = 77)试验研究了口服,选择性,中枢神经系统 - pentrant,II型RAF抑制剂Tovorafenib(420 mg m -2一次,每周420 mg M -2最高600 mg)对BRAF -ARAF -ARETED -ARETED -ARETED -ARTERED -PLACCED的患者的功效。ARM 2(n = 60)是一个延伸队列,它为ARM 1闭合后的RAF改变PLGG患者提供了治疗。基于独立审查,根据神经肿瘤高级神经胶质瘤(RANO-HGG)标准的响应评估,67%的总响应率(ORR)符合ARM 1 1预定的主要端点;响应持续时间(DOR)为16.6个月;响应时间(TTR)的中位时间为3.0个月(次要终点)。通过小儿神经肿瘤学低级神经胶质瘤(RAPNO)标准和安全性评估评估的其他选择的次要终点包括ORR,DOR和TTR(在所有治疗的患者中评估,ARM 2,ARM 2,n = 137)。根据RAPNO标准(包括次要答复)的ORR为51%; DOR中位数为13.8个月; TTR中位数为5.3个月。最常见的治疗不良事件(TRAES)是头发颜色变化(76%),肌酸磷酸激酶(56%)和贫血(49%)。≥3级Traes发生在42%的患者中。九(7%)患者患有TRAES导致停用Tovorafenib。这些数据表明,Tovorafenib可能是对BRAF的,经过重复/难治性的PLGG的有效疗法。临床。GOV注册:NCT04775485。
BRAF基因组改变是小儿低级神经胶质瘤(PLGG)中最常见的致癌驱动因素。ARM 1(n = 77)试验研究了口服,选择性,中枢神经系统 - pentrant,II型RAF抑制剂Tovorafenib(420 mg m -2一次,每周420 mg M -2最高600 mg)对BRAF -ARAF -ARETED -ARETED -ARETED -ARTERED -PLACCED的患者的功效。ARM 2(n = 60)是一个延伸队列,它为ARM 1闭合后的RAF改变PLGG患者提供了治疗。基于独立审查,根据神经肿瘤高级神经胶质瘤(RANO-HGG)标准的响应评估,67%的总响应率(ORR)符合ARM 1 1预定的主要端点;响应持续时间(DOR)为16.6个月;响应时间(TTR)的中位时间为3.0个月(次要终点)。通过小儿神经肿瘤学低级神经胶质瘤(RAPNO)标准和安全性评估评估的其他选择的次要终点包括ORR,DOR和TTR(在所有治疗的患者中评估,ARM 2,ARM 2,n = 137)。根据RAPNO标准(包括次要答复)的ORR为51%; DOR中位数为13.8个月; TTR中位数为5.3个月。最常见的治疗不良事件(TRAES)是头发颜色变化(76%),肌酸磷酸激酶(56%)和贫血(49%)。≥3级Traes发生在42%的患者中。九(7%)患者患有TRAES导致停用Tovorafenib。这些数据表明,Tovorafenib可能是对BRAF的,经过重复/难治性的PLGG的有效疗法。临床。GOV注册:NCT04775485。
1 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院费城儿童医院儿科肿瘤科;2 美国伊利诺伊州芝加哥安与罗伯特 H. 卢里儿童医院;3 澳大利亚新南威尔士州兰德威克悉尼儿童医院儿童癌症中心;4 澳大利亚新南威尔士州悉尼新南威尔士大学洛伊癌症研究中心儿童癌症研究所;5 澳大利亚新南威尔士州悉尼新南威尔士大学临床医学院;6 美国华盛顿特区儿童国家医院;7 丹麦哥本哈根哥本哈根大学医院 - Rigshospitalet 儿科和青少年医学部;8 荷兰乌得勒支马克西玛公主儿科肿瘤中心;9 澳大利亚昆士兰州南布里斯班昆士兰儿童健康医院和健康服务中心; 10 瑞士苏黎世大学儿童医院肿瘤科;11 美国纽约州纽约市纽约大学朗格尼健康中心;12 加拿大魁北克省魁北克市拉瓦尔大学儿童太阳中心儿科;13 美国加利福尼亚州旧金山市加利福尼亚大学神经内科、神经外科和儿科系;14 美国加利福尼亚州布里斯班 Day One Biopharmaceuticals;15 美国北卡罗来纳州达勒姆市杜克大学
摘要:由于对有效的治疗干预措施的需求不断增长,计算方法被用于药物发现中。这项工作的重点是使用一种硅胶方法来寻找可能的药物靶标,并检查它们如何与人类突变体复合物中的AG-881(Vorasidenib)抑制剂和NADPH相互作用。我们使用分子对接,结构验证和毒性预测评估了Tovorafenib和姜黄素作为可能的治疗剂的有效性。cb-dock用于分子对接。使用Pymol计算用于结构稳定性分析的根平方偏差(RMSD)。为了确定所选化合物的安全性,使用毒素毒性鉴定进行了毒性评估。我们的结果表明,姜黄素和Tovorafenib在目标稳定性分析中都表现出令人鼓舞的结合亲和力和结构稳定性。使用正毒素进行毒性评估,以确定所选化合物的安全性。我们的发现表明,Tovorafenib和姜黄素在靶复合物中都表现出有希望的结合亲和力和结构稳定性,姜黄素表现出良好的毒性特征。这项研究强调了计算药物发现在识别新型治疗候选者中的潜力,这有助于精确医学的发展。关键字:分子对接;结合亲和力; Tovorafenib;药效团建模;结构分析; AG-881抑制剂