数据驱动的增材制造(AM)的研究在近年来取得了巨大的成功。这导致了许多科学文献的出现。这些作品中的知识包括AM和人工智能(AI)上下文,这些环境尚未以综合的方式开采和形式化。此外,没有任何工具或准则可以支持从一个上下文到另一种上下文的数据驱动知识转移。结果,仅针对特定的AM过程技术开发并验证了使用特定AI技术的数据驱动解决方案。有可能利用各种AM技术的固有相似性,并使用AI(例如转移学习)将现有解决方案从一个过程或问题调整到另一个过程。我们在AM中提出了一个三步知识转移性分析框架,以支持数据驱动的AM知识传输。作为可转让性分析的先决条件,AM知识被介绍为已识别的知识组成部分。该框架由转移,转移和转移后的步骤组成,以完成知识转移。在旗舰金属AM过程之间进行了案例研究。激光粉末床融合(LPBF)是知识的来源,它是由于其在定向能量沉积(DED)上应用AI时相对成熟度(DED)的来源,它可以将知识转移的需求作为较少探索的目标过程。我们在数据驱动的解决方案的不同级别上显示了成功的传输,包括数据表示,模型体系结构和模型参数。AM
在Web应用程序的开发中,互联网技术的快速发展带来了前所未有的机会,并增加了对用户身份验证方案的需求。在区块链技术出现之前,建立两个陌生的实体之间的信任,依靠可信赖的第三方进行身份验证。但是,这种值得信赖的第三方的失败或恶意行为可能破坏此类身份验证方案(例如,单点失败,凭证泄漏)。安全授权系统是用户身份验证方案的另一个要求,因为用户必须授权其他实体在某些情况下代表其行事。如果身份验证许可的转让不足,则可能会发生诸如未经授权转移到实体的安全风险。一些研究提出了基于区块链的分散用户身份验证解决方案,以解决这些风险并提高可用性和可审核性。,众所周知,大多数提出的计划允许用户将身份验证权限转移到其他实体中,需要在智能合约中部署和触发时大量的天然气消耗。为了解决此问题,我们提出了一种仅基于哈希功能的可转让性的身份验证方案。通过将一次性密码与Hashcash相结合,该方案可以限制可以在确保确定性的同时传输权限的次数。此外,由于它仅依赖哈希功能,我们提出的身份验证方案在智能合约中的计算复杂性和气体构成方面具有绝对的优势。此外,我们已经在Goerli测试网络上部署了智能合约,并证明了这种身份验证方案的实用性和效率。
预期杂合性(HE)值范围从0.031(Marker MBO56)到0.571(Marker MBO35)。使用这些标记,对遗传多样性的分析(表4)表明,在微卫星基因座检测到的多态性标记数量从8个(togbin and Malanville的地点)到10(Savè,Agoua,Pendjari,Pendjari,Pingou和TroisRivières),并具有9±0.865的范围。除了Savè,Hounviatouin和Malanville之外,在大多数采样位置都观察到目标微卫星基因座的1至3个私人等位基因。关于遗传参数,有效等位基因(NE)的数量范围为1.447至2.069,平均数为1.761。从0.263(Hounviatouin)到0.451(SAVè),平均值为0.354,而观察到的杂合性(HO)的平均值为0.234(togbin)到0.405(pingou),平均值为0.335。 固定指数(F)的负值为从0.263(Hounviatouin)到0.451(SAVè),平均值为0.354,而观察到的杂合性(HO)的平均值为0.234(togbin)到0.405(pingou),平均值为0.335。固定指数(F)的负值为
根据气候变化委员会 (CCC) – 第六个碳预算;英国实现净零排放之路 (12 月 - 2020 年) 的假设,石油和天然气将继续在英国能源结构中发挥关键作用,尤其是在近期和中期内。根据 CCC 报告、北海过渡协议和 OGUK 净零排放盆地之路:2020 年生产排放目标报告,预计英国大陆架石油和天然气产量将从 2020 年的约 160 万桶油当量 (mmboe/天) 下降到 2030 年的约 100 万桶油当量/天。
由于预训练的深度学习模型大量可用,迁移学习在计算机视觉任务中变得至关重要。然而,从多样化的模型池中为特定的下游任务选择最佳的预训练模型仍然是一个挑战。现有的衡量预训练模型可迁移性的方法依赖于编码静态特征和任务标签之间的统计相关性,但它们忽略了微调过程中底层表示动态的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们提出了一种名为 PED 的富有洞察力的物理启发方法来应对这些挑战。我们从势能的视角重新定义模型选择的挑战,并直接模拟影响微调动态的相互作用力。通过捕捉动态表示的运动来降低力驱动物理模型中的势能,我们可以获得增强的、更稳定的观察结果来估计可迁移性。在 10 个下游任务和 12 个自监督模型上的实验结果表明,我们的方法可以无缝集成到现有的排名技术中并提高其性能,揭示了其对模型选择任务的有效性以及理解迁移学习机制的潜力。代码可在 https://github.com/lixiaotong97/PED 上找到。
摘要:冠层燃料特性对于评估林分中的火灾危险和潜在严重程度至关重要。模拟工具为防火规划提供了有用的信息,以减少野火的影响,前提是存在具有足够空间分辨率的可靠燃料图。许多国家正在提供免费的机载 LiDAR 数据,为大规模改善燃料监测提供了机会。在本研究中,我们建立了模型,以估计松林区机载 LiDAR 的冠层基高 (CBH)、燃料负荷 (CFL) 和体积密度 (CBD),其中以不同的脉冲密度获取了四个点云数据集。使用来自 1 p/m 2 数据集的 LiDAR 指标对 CBH、CFL 和 CBD 进行拟合的最佳模型分别得出调整后的 R 2 为 0.88、0.68 和 0.58,RMSE (MAPE) 为 1.85 m (18%)、0.16 kg/m 2 (14%) 和 0.03 kg/m 3 (20%)。拟合模型的可转移性评估表明,根据 LiDAR 脉冲密度(高于和低于校准数据集)和模型公式(线性、幂和指数),精度水平不同。与较低(0.5 p/m 2 )或较高回波密度(4 p/m 2 )相比,指数模型和类似脉冲密度(1.7 p/m 2 )的结果最佳。还观察到冠层燃料属性方面的差异。
无监督的域适应性在将知识从标记的源域转移到未标记的目标域,在时间序列应用中起关键作用。现有的时间序列域适应方法要么忽略频率特征,要么平等地处理时间和频率特征,这使得充分利用这两种功能的优势变得具有挑战性。在本文中,我们深入研究了可传递性和可区分性,这是传递表示学习中的两个至关重要的特性。可以洞悉频率特征在特定域内更具歧视性,而时间特征则在跨域上显示出更好的可传递性。基于发现,我们提出了一个dversarial co-co-co-n n etworks(acon),以通过协作学习方式在三个方面通过协作学习方式来增强可转移的表示:(1)考虑到时代的多个过度差异,提出了多个频率频率特征学习,以增强频率特征的辨别能力; (2)提出了时间域互助学习,以增强源域中时间特征的可区分性,并提高目标域中频率特征的可传递性; (3)域对抗学习是在时间频率特征的相关子空间中进行的,而不是原始特征空间,以进一步增强这两个特征的可传递性。在广泛的时间序列数据集和五个常见范围内进行的广泛实验证明了ACON的最新性能。代码可从https://github.com/mingyangliu1124/acon获得。
摘要 — 脑机接口 (BCI) 允许从大脑到外部应用程序直接通信,以自动检测认知过程,例如错误识别。错误相关电位 (ErrPs) 是当一个人犯下或观察到错误事件时引发的一种特殊大脑信号。然而,由于大脑和记录设备的噪声特性,ErrPs 会因各种其他大脑信号、生物噪声和外部噪声的组合而有所不同,这使得 ErrP 的分类成为一个不简单的问题。最近的研究揭示了导致 ErrP 变化的特定认知过程,例如意识、体现和可预测性。在本文中,我们探索了在通过改变给定任务的意识和体现水平而生成的不同 ErrP 变化数据集上进行训练时分类器可迁移性的性能。特别是,我们研究了当由相似和不同的任务引发时观察性和交互性 ErrP 类别之间的转移。我们的实证结果从数据角度对 ErrP 可转移性问题进行了探索性分析。
本论文(开放获取)由乔治亚南方大学杰克·N·阿维里特研究生院 Digital Commons@Georgia Southern 免费提供给您,供您开放获取。该论文已被 Digital Commons@Georgia Southern 的授权管理员接受并纳入电子论文和学位论文。如需更多信息,请联系 digitalcommons@georgiasouthern.edu 。
抽象的气候降低降级,这是从低分辨率模拟中生成高分辨率气候数据的过程,对于理解和适应区域和本地规模的气候变化至关重要。深度学习方法已被证明在解决此问题方面很有用。但是,存在研究通常集中在一个特定任务,位置和变量的培训模型上,因此它们的可推广性和可传递性受到限制。在本文中,我们评估了培训深度学习对多种气候数据集的深度学习模式的效果,以了解更多可靠和可转移的表示形式。我们使用CNN,傅立叶核电运算符(FNOS)和视觉变压器(VIT)评估体系结构零射击传递性的有效性。我们以实质性地评估了降尺度模型的空间,可变和产物的可传递性,以了解这些不同体系结构类型的普遍性。