摘要:随着物联网 (IoT) 的发展,无论在哪个领域,部署的监控应用数量都在大幅增加:智慧城市、智慧农业、环境监测、空气污染监测等等。LoRaWAN(长距离广域网)架构具有长距离通信、抗干扰能力强和能耗低等特点,是支持此类应用的绝佳选择。但是,如果终端设备数量很多,LoRaWAN 的可靠性(以数据包传送率 (PDR) 衡量)会因过多的冲突而变得不可接受。在本文中,我们提出了两种不同的解决方案系列,以确保无冲突传输。第一个系列基于 TDMA(时分多址)。所有集群按顺序传输,并且允许属于同一集群的最多六个具有不同扩频因子的终端设备并行传输。第二个系列基于 FDMA(频分多址)。所有集群并行传输,每个集群使用自己的频率。在每个集群内,所有终端设备按顺序传输。从 PDR、终端设备能耗和支持的最大终端设备数量等方面比较它们的性能。模拟结果证实了理论结果,并显示了所提解决方案的高效性。
启用 / 禁用 ISBT 128 ................................................................................................................ 8-25 ISBT 连接 .............................................................................................................................. 8-26 检查 ISBT 表 .............................................................................................................................. 8-27 ISBT 连接冗余 ...................................................................................................................... 8-27 Code 128 安全级别 ...................................................................................................................... 8-28 Code 39 ...................................................................................................................................... 8-29 启用 / 禁用 Code 39 ................................................................................................................ 8-29 启用 / 禁用 Trioptic Code 39 ................................................................................................ 8-29 将 Code 39 转换为 Code 32 ........................................................................................................ 8-30 Code 32 前缀 ........................................................................................................................ 8-30 设置 Code 39 的长度 ................................................................................................................ 8-31 Code 39 校验位验证 ................................................................................................................ 8-32传输 Code 39 校验位 ................................................................................................................ 8-32 Code 39 全 ASCII 转换 .............................................................................................................. 8-33 Code 39 缓冲 - 扫描和存储 ........................................................................................................ 8-33 缓冲区数据 ............................................................................................................................. 8-34 清除传输缓冲区 ...................................................................................................................... 8-34 传输缓冲区 ............................................................................................................................. 8-35 传输缓冲区过满 ...................................................................................................................... 8-35 尝试传输空缓冲区 ...................................................................................................................... 8-35 Code 39 安全级别 ............................................................................................................................. 8-36 Code 93 .............................................................................................................................................8-37 启用/禁用 Code 93 ................................................................................................................ 8-37 设置 Code 93 的长度 .............................................................................................................. 8-37 Code 11 ................................................................................................................................ 8-39 Code 11 ................................................................................................................................ 8-39 设置 Code 11 的长度 ................................................................................................................ 8-39 Code 11 校验位验证 ............................................................................................................. 8-41 传输 Code 11 校验位 ............................................................................................................. 8-42 Interleaved 2 of 5 (ITF) ............................................................................................................................. 8-43 启用/禁用 Interleaved 2 of 5 ............................................................................................................. 8-43 设置 Interleaved 2 of 5 的长度 ............................................................................................................. 8-43 I 2 of 5 校验位验证................................................................................................ 8-45 传输 I 2 of 5 校验位 .............................................................................................................. 8-45 将 I 2 of 5 转换为 EAN-13 .............................................................................................................. 8-46 I 2 of 5 安全级别 ...................................................................................................................... 8-47 离散 2 of 5 (DTF) ............................................................................................................................. 8-48 启用/禁用离散 2 of 5 ............................................................................................................. 8-48 设置离散 2 of 5 的长度 ............................................................................................................. 8-48 Codabar (NW - 7) ............................................................................................................................. 8-50 启用/禁用 Codabar ............................................................................................................................. 8-50 设置 Codabar 的长度 ............................................................................................................................. 8-50 CLSI 编辑 ............................................................................................................................. 8-52 NOTIS編輯............................................................................................................................ 8-52 Codabar 大写或小写起始/终止字符检测 .......................................................................... 8-53 MSI ............................................................................................................................................. 8-54 启用/禁用 MSI ............................................................................................................................. 8-54 设置 MSI 长度 ............................................................................................................................. 8-54 MSI 校验位 ............................................................................................................................. 8-56 传输 MSI 校验位 ............................................................................................................................. 8-56 MSI 校验位算法 ............................................................................................................................. 8-57
同步系统最初用于巴拿马运河的控制系统,将闸门和阀杆位置以及水位传输到控制台。由此,海军设计师意识到位置信息可用于海军舰艇的潜力。该传感器的原始名称是 Selsyn,实际上是一个品牌名称。后来将其重新命名为 synchro,作为通用传感器名称。早期的海军应用包括 20 世纪 20 年代首次开发的火控系统的枪支定位。同步器会将当前的枪支位置传输到火控系统,然后将所需位置传回给炮手。早期的定位系统只是移动指示器刻度盘。随着技术的发展,进入 20 世纪 30 年代,人们发明了增强威力的方法,因此,无需移动简单的刻度盘来定位,而是可以直接移动实际的枪支和炮塔。
辐射和不同技术的融合,为微波工程界带来了激动人心的挑战。例如,图2 显示了 ITT Defense Technology Corporation 开发的相控阵雷达的全固态发射/接收模块。3 该模块在 20070 效率下提供 30 dB 增益,在 5 至 6 GHz 下以 12 W 峰值输出功率运行。它包含一个六位可编程移相器和发射器/接收器开关;一个功率放大器和两个驱动器;以及一个带发射/接收开关的低噪声前置放大器。该开发单元尺寸为 3.8 x 2.5 x 12.7 厘米,重 170 克;未来版本的尺寸和重量预计将是这个的一半。德州仪器公司开发了一款 X 波段的单芯片单片发射/接收模块。4 单芯片 13 x 4.5 毫米集成电路模块工作频率为 8 至 12 GHz,由一个 4 位移相器、一个 4 级功率放大器、一个 3 级低噪声放大器和两个发射/接收开关组成。该模块在发射模式下提供 500mW 输出,增益为 26dB,效率为 12.5%,在接收模式下提供 18dB 增益,噪声系数为 5.5dB。图 3 显示了 MIMIC 组件 HMM 11810。HMM 11810 是用于宽带应用的商业产品(Harris Semiconductor)。它在 6 至 18 GHz 频段提供 5 dB 增益,平坦度为 ±0.75 dB,输出功率为 50 m W,噪声系数为 6.5 dB。这只是大量可用于系统工程的 MIMIC 产品中的一个例子。微波元件的主要最终用户一直是军方,并且将继续是军方。20 世纪 80 年代初,卫星电视和数据传输承诺的大规模商业市场并未成为竞争技术(例如光纤)
辐射和不同技术的融合,为微波工程界带来了激动人心的挑战。例如,图2 显示了 ITT Defense Technology Corporation 开发的相控阵雷达的全固态发射/接收模块。3 该模块在 20070 效率下提供 30 dB 增益,在 5 至 6 GHz 下以 12 W 峰值输出功率运行。它包含一个六位可编程移相器和发射器/接收器开关;一个功率放大器和两个驱动器;以及一个带发射/接收开关的低噪声前置放大器。该开发单元尺寸为 3.8 x 2.5 x 12.7 厘米,重 170 克;未来版本的尺寸和重量预计将是这个的一半。德州仪器公司开发了一款 X 波段的单芯片单片发射/接收模块。4 单芯片 13 x 4.5 毫米集成电路模块工作频率为 8 至 12 GHz,由一个 4 位移相器、一个 4 级功率放大器、一个 3 级低噪声放大器和两个发射/接收开关组成。该模块在发射模式下提供 500mW 输出,增益为 26dB,效率为 12.5%,在接收模式下提供 18dB 增益,噪声系数为 5.5dB。图 3 显示了 MIMIC 组件 HMM 11810。HMM 11810 是用于宽带应用的商业产品(Harris Semiconductor)。它在 6 至 18 GHz 频段提供 5 dB 增益,平坦度为 ±0.75 dB,输出功率为 50 m W,噪声系数为 6.5 dB。这只是大量可用于系统工程的 MIMIC 产品中的一个例子。微波元件的主要最终用户一直是军方,并且将继续是军方。20 世纪 80 年代初,卫星电视和数据传输承诺的大规模商业市场并未成为竞争技术(例如光纤)
让我们退一步考虑最简单的经典纠错码——重复码。假设发送者想要向接收者传输单比特消息 0 或 1。但是,连接它们的通信信道很嘈杂,偶尔会翻转比特值。要使用重复码传输 0,发送者需要传输三个零:000;要传输 1,需要传输三个 1:111。原始传输的嘈杂版本被传送给接收者,其中部分(甚至全部)比特已被翻转为相反的值。接收者的任务是确定发送者传输了什么消息。假设比特翻转只是偶尔发生,那么接收者可以合理地假设发送者的预期消息是在嘈杂的接收版本中最常出现的比特值。这称为多数表决解码。整个过程确保即使传输中有一个错误,预期消息也能被正确接收。假设错误独立发生在传输的比特上
SARS-Cov-2 主要在人与人之间传播,传染性极强,可通过呼吸道和接触传播。接触后 1 至 14 天内可能会出现症状。患者可在症状出现前 2 天和出现症状期间传播病毒。约 40% 的人可能没有任何症状,尽管他们能够传播感染。常见症状包括喉咙痛、流鼻涕、咳嗽、发烧、呼吸急促、头痛、身体疼痛、嗅觉/味觉丧失、腹泻和呕吐。