• 在 St. Baldrick 的支持下,Ashraf Mohamed 博士将综合肿瘤学带到了德克萨斯州沃斯堡的库克儿童医疗中心。综合肿瘤学将专家聚集在一起,为儿童癌症患者提供补充疗法。这些循证实践包括动物辅助治疗、康复服务、心理教育、心理社会筛查、行为健康策略、创意艺术疗法、牧师服务、安全草药/补充剂计划和疼痛管理策略等干预措施。从心理社会筛查中收集的信息将显示员工心理社会困扰的趋势,这将有助于患者的诊断和治疗决策,以及对适当的补充治疗干预措施的建议。• St. Baldrick 的研究员 Jessica Tsai 博士和同事发现,一种名为 FOXR2 的基因在大多数组织中通常是关闭的,但在至少 70% 的癌症类型中却被激活,这有助于研究人员了解癌症是如何发展的。例如,他们发现骨肉瘤显示 FOXR2 表达,并且 FOXR2 会促进脑肿瘤(包括弥漫性中线胶质瘤)的生长速度。
• 蔡志强,电能实业 • 谢志云,香港特别行政区政府环境局 • 马雅燕,香港浸会大学 • 戴维斯·博克,香港科技大学 • 陈德博,中国水资源研究所 • 周文忠,香港生产力促进局 • 罗范椒芬 • 伊莎贝尔·卡雷拉·扎马尼洛,斯坦福大学地球能源与环境科学学院 • Jim Taylor、Jeanne Ng、吕志和,中华电力香港有限公司 • 许志凯,新加坡国家发展部宜居城市中心 • Lisa Genasci,ADM 资本基金会 • 邝伟,陈家俊,香港中华煤气有限公司 • 方伟,顾宇,阳光电源股份有限公司 • 梁曦,中英(广东)CCUS 中心 • 杨晓亮,中国油气气候投资公司 • 徐远,香港中文大学 • 苏兆龙、刘慧、张文(实习生)、田中美(实习生)、Justine萧伟强 (实习生)
范玉斌 , a,b,c, † 梁红 , d,e, † 王昱涵, f, † 陈淑凡, a,b,c 赖方星, f 陈木库, a,b,c 肖淑敏, f,g, * 李仁森, d,e, * 和蔡鼎平 a,b,c, * a 香港城市大学,电机工程学系,香港,中国 b 香港城市大学,生物系统、神经科学及纳米技术中心,香港,中国 c 香港城市大学,太赫兹及毫米波国家重点实验室,香港,中国 d 香港科技大学,物理系,香港,中国 e 香港科技大学,高等研究院量子技术研究中心,香港,中国 f 哈尔滨工业大学(深圳),工业和信息化部微纳光电信息系统重点实验室,广东省半导体光电材料与智能光子学重点实验室系统,深圳,中国 g 鹏程实验室,深圳,中国
Title: Cross-ancestry, cell-type-informed atlas of gene, isoform, and splicing regulation in the developing human brain Authors: Cindy Wen 1,2,3 , Michael Margolis 2,3 , Rujia Dai 4 , Pan Zhang 2,3 , Pawel F. Przytycki 5 , Daniel D. Vo 2,3,6,7 , Arjun Bhattacharya 8,9 , Nana Matoba 10,11,Chuan Jiao 4,Minsoo Kim 2,3,Ellen Tsai 2,3,Celine Hoh 2,3,NilAygün11111111,Rebecca L. Walker 1,2,3,Christos Chistos Chatzinakos,Chatzinakos 12,13,14,Declan Clarke 15,Declan Clarke 15,Henry Pratt Pratt 17,Marks Conscyend A. 15,18,19,20 , Nikolaos P. Daskalakis 12,13,14 , Zhiping Weng 16 , Andrew E. Jaffe 21,22,23,24,25,26,27 , Joel E. Kleinman 21,22 , Thomas M. Hyde 21,22,28 , Daniel R. Weinberger 21,22,23,24,28 , Nicholas J. Bray 29,Nenad Sestan 30,31,Daniel H. Geschwind 3,32,33,Kathryn Roeder 34,35,Alexander Gusev 36,37,38,39,Bogdan Pasaniuc,Bogdan Pasaniuc 1,3,8,33,40Love 10,41,Katherine S. Pollard 5,42,43,Chunyu Liu 4,44*,Michael J. Gandal 1,2,3,6,7*
1 华南理工大学自动化科学与工程学院,广东广州,中国。2 斯坦福大学精神病学和行为科学系,美国加利福尼亚州斯坦福。3 斯坦福大学吴仔神经科学研究所,美国加利福尼亚州斯坦福。4 美国退伍军人事务帕洛阿尔托医疗保健系统和塞拉太平洋精神疾病研究、教育和临床中心 (MIRECC),美国加利福尼亚州帕洛阿尔托。5 美国德克萨斯州达拉斯德克萨斯大学西南医学中心精神病学系。6 美国德克萨斯州达拉斯德克萨斯大学西南医学中心奥唐奈脑研究所。7 脑诊所基金会脑诊所研究所,荷兰奈梅亨。8 荷兰马斯特里赫特大学心理学和神经科学学院认知神经科学系。9 美国马萨诸塞州贝尔蒙特哈佛医学院和麦克莱恩医院精神病学系。 10 纽约州精神病研究所和哥伦比亚大学医学院精神病学系,纽约州纽约市,美国。11 乌得勒支大学实验心理学系,荷兰乌得勒支。12 荷兰神经护理集团,荷兰奈梅亨。13 以下作者贡献相同:Madhukar H. Trivedi、Amit Etkin。✉ 电子邮件:amitetkin@stanford.edu
1案例西部储备大学生物医学工程系,俄亥俄州克利夫兰,俄亥俄州,44106,2 2号神经外科系,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94035,3史坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,CA 94035,44035,44035,44035,44035,44035 RI 02912, 6 Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02912, 7 VA RR&D Center for Neurorestoration and Neurotechnology, Providence, RI 02912, 8 Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, 9 Department of Neurological Surgery, Case Western Reserve School of Medicine School俄亥俄州克利夫兰,俄亥俄州克利夫兰44106,大学医院神经病学系10,克利夫兰医学中心,俄亥俄州克利夫兰医学中心,俄亥俄州克利夫兰,44106,11 11,布朗大学,普罗维登斯,RI 02912,12912,12 02114, 14 Department of Bioengineering, Stanford University, Stanford, CA 94035, 15 Department of Neurobiology, Stanford University, Stanford, CA 94035, 16 Howard Hughes Medical Institute at Stanford University, Stanford, CA 94035, 17 Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94035, and 18 Bio-X Program,斯坦福大学,斯坦福大学,加利福尼亚州94035
1:30 pm 10-1 :(被邀请)类似基于变压器的语言模型(被邀请)类似类似的硬件加速器»Geoffrey W. Burr(美国)1,Hsinyu Tsai(美国)1,IEM Boybat(瑞士)博士(瑞士)2,William A. Simon(Switzerland) Vasilopoulos(瑞士)2,Pritish Narayanan博士(美国)1,Andrea Fasoli博士(美国)1,Kohji Hosokawa先生(日本)3(日本)3,Manuel Lealoo(瑞士)博士(瑞士)2国家)1,查尔斯·麦金(Charles Mackin)(美国)1,埃琳娜·费罗(Elena Ferro)(瑞士)2,Kaoutar El Maghraoui博士(美国)4,Hadjer Benmeziane博士(瑞士)2,Timothy Philicelli(美国)5,美国的Timothy Philicelli博士(瑞士) ,Shubham Jain博士(美国)4,Abu Sebastian博士(瑞士)2,Vijay Narayanan博士(美国)4(1。IBM研究-Almaden,2。IBM Research Europe,3。IBM东京研究实验室,4。 IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM东京研究实验室,4。IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM T. J. Watson Research Center,5。IBM Albany Nanotech)IBM Albany Nanotech)
1:30 pm 10-1 :(被邀请)类似基于变压器的语言模型(被邀请)类似类似的硬件加速器»Geoffrey W. Burr(美国)1,Hsinyu Tsai(美国)1,IEM Boybat(瑞士)博士(瑞士)2,William A. Simon(Switzerland) Vasilopoulos(瑞士)2,Pritish Narayanan博士(美国)1,Andrea Fasoli博士(美国)1,Kohji Hosokawa先生(日本)3(日本)3,Manuel Lealoo(瑞士)博士(瑞士)2国家)1,查尔斯·麦金(Charles Mackin)(美国)1,埃琳娜·费罗(Elena Ferro)(瑞士)2,Kaoutar El Maghraoui博士(美国)4,Hadjer Benmeziane博士(瑞士)2,Timothy Philicelli(美国)5,美国的Timothy Philicelli博士(瑞士) ,Shubham Jain博士(美国)4,Abu Sebastian博士(瑞士)2,Vijay Narayanan博士(美国)4(1。IBM研究-Almaden,2。IBM Research Europe,3。IBM东京研究实验室,4。 IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM东京研究实验室,4。IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM T. J. Watson Research Center,5。IBM Albany Nanotech)IBM Albany Nanotech)
本文提出了一个有效的一致核模型,以分析基于一致的夫妇应力理论(CCST)和非经典限定元素方法的功能分级纳米复合材料(FG-NC)Mindlin板的行为。基于Halpin – Tsai模型提出了一种新颖的统一形式,以限制小规模的异质性,可以同时考虑基质和增强阶段的分级效应以及通过平板厚度的分布分布。为了满足夫妻应力理论的C 1连续性要求,通过使用Hermitian方法并以亚参数方式采用了四节点的矩形元素。该元素在每个节点上具有20度的自由度(DOF),在弯曲模式下将其降低至12 DOF,而不会伸展变形。FG-NC板的弯曲,自由振动和屈曲行为。氧化石墨烯(GO),氧化石墨烯(RGO)还原和银还原的石墨烯氧化石墨烯(AG-RGO)被考虑在分散相。尺寸依赖性最佳值,从而最大程度地减少其质量的频率约束。检查了各种参数的效果,例如分级指数,重量分数,分散模式,填充剂方面/厚度比和长度尺度参数,并提供了基准示例。
1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。