在压力下,新发现的LA 3 Ni 2 O 7中新发现的高温超导性吸引了很多关注。表征电子特性的基本要素是双层NiO 2平面,该平面是通过中间氧原子的3 d Z 2轨道的层间键合结合的。在强耦合极限中,低能物理学由内征抗磁性自旋交换相互作用j K在3 d x 2-y 2轨道之间的j k和3 d z 2轨道之间的层间j k之间描述。考虑到每个站点上的规则并整合了3 d Z 2自由度的自由度,该系统将基于3 d x 2 -2 -y 2轨道的单轨道双层t -j模型还原为单轨道双层T -J模型。通过采用奴隶玻色子方法,求解了键合和配对阶参数的自动一致方程。在物理相关的1 4填充方案附近(掺杂δ¼0。3〜0。5),层间耦合j⊥将常规的单层D-波超导状态调整为S波。强的J⊥可以增强层间超导顺序,从而导致t c急剧增加。有趣的是,可能存在一个有限的制度,在这种制度中,出现了sÞID状态。
人工智能 (AI) 的进步使其越来越多地适用于以决策支持系统的形式补充专家在各种任务上的决策。例如,基于人工智能的系统可以为治疗师提供有关患者状况的定量分析,以改进康复评估实践。然而,对于这些系统的潜力知之甚少。在本文中,我们介绍了一种基于人工智能的交互式系统的开发和评估,该系统支持与治疗师一起进行康复评估决策。该系统自动识别评估的显著特征,为治疗师生成针对患者的分析,并根据他们的反馈进行调整。在与治疗师的两次评估中,我们发现我们的系统支持治疗师在评估上的一致性明显高于传统的没有分析的系统(平均 F1 分数为 0.66,𝑝 < 0.05)。根据治疗师的反馈进行调整后,我们的系统性能显著提高,平均 F1 分数从 0.8377 提高到 0.9116(𝑝 < 0 . 01)。这项研究探讨了人机协作系统在学习彼此优势的同时支持更准确决策的潜力。
本研究引入了一种创新的机器学习框架,以提高糖尿病预测准确性和模型可解释性。该方法首先通过链式方程 (MICE) 进行多次插补,以解决缺失数据并确保完整的数据集以供分析。为了解决类别不平衡问题,采用了合成少数过采样技术 (SMOTE)。使用 Z 分数异常值检测来去除异常值,进一步提高模型的稳健性。结合灰狼优化器 (GWO) 和方差分析的混合特征选择方法混合 GWAN 优化了相关特征的选择,平衡了预测能力和模型简单性。该框架的核心是自适应增强梯度增强机 (ADGB),这是一种融合了 AdaBoost 和梯度增强机 (GBM) 优势的集成学习模型。通过 Hyperband 算法进行超参数优化可以对模型进行微调,实现 97.84% 的高预测准确率。这种综合方法不仅提高了准确性,还提高了预测模型的精度、召回率和 F1 分数。通过整合这些先进技术,该框架在早期糖尿病诊断中展现出巨大潜力,强调了集成方法在医疗数据分析中的重要性以及开发可靠诊断工具的准确、可解释模型的必要性。关键词:灰狼优化器、梯度提升机、合成少数群体、公共健康 1. 介绍
摘要:结构颜色是一种引人入胜的光学现象,它是由复杂的光 - 物质相互作用引起的。来自天然聚合物的生物结构颜色在仿生设计和可持续结构中是无价的。在这里,我们报告了一种可再生,丰富且可生物降解的有机凝胶,该有机凝胶会产生具有生动结构颜色的稳定胆固醇液晶结构。我们使用68 wt%羟丙基纤维素(HPC)基质构建色凝胶,结合了不同的聚乙烯乙二醇(PEG)宾客分子。PEG包含具有定制极性的奇特端基团,可以通过PEG和HPC链之间的静电排斥在HPC螺旋主链上精确定位。这可以保留HPC的手性列相,而不会受到干扰。我们证明了钉子的极性会调谐HPC凝胶的反射色。此外,具有可变极性的凝胶对温度,压力和拉伸高度敏感,从而导致快速,连续和可逆的颜色变化。这些特殊的动态特征建立了手性列凝胶,作为跨显示,可穿戴设备,柔性电子,健康监测和多功能传感器的下一代应用的出色候选者。关键字:手性列结构,羟丙基纤维素,螺距,聚乙烯乙二醇,结构颜色
电子波功能的拓扑方面在确定材料的物理特性中起着至关重要的作用。浆果曲率和Chern数用于定义电子带的拓扑结构。虽然已经研究了浆果曲率及其在材料中的作用,但检测到拓扑不变的Chern数的变化是具有挑战性的。特别是谷谷类型的变化。在这方面,扭曲的双重双层石墨烯(TDBG)已成为一个有前途的平台,以获得对浆果曲率热点的电气控制和其平坦带的山谷Chern数量。此外,应变诱导的TDBG中三倍旋转(C3)对称性的破裂导致浆果曲率的非零第一刻,称为浆果曲率偶极子(BCD),可以使用非线性HALL(NLH)效应来感测。我们使用TDBG揭示了BCD检测到频段中的拓扑转换并更改其符号[1]。在TDBG中,垂直电场对山谷Chern号和BCD进行了调整,并同时为我们提供了一个可调的系统,以探测拓扑过渡的物理。我还将讨论我们使用非线性霍尔物理学探测Moire系统手性的初步实验。1。Sinha等。自然物理学18,765(2022)。
摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
大型语言模型(LLMS)已经证明了需要解决任务计划和使用外部工具(例如天气和计算器API)组合的任务的熟练程度。但是,现实世界中的复杂系统提出了有关任务计划和工具使用情况的三个普遍的挑战:(1)实际系统通常具有许多API,因此将所有API的描述以LLMS的提示馈送是不切实际的,因为代币长度有限; (2)实际系统是为处理复杂任务而设计的,基本LLM几乎无法为此类任务计划正确的子任务订单和API呼叫顺序; (3)实际系统中API之间的类似语义和功能在区分它们时都为LLM甚至人类都带来了挑战。回应,本文介绍了一个旨在增强现实世界中LLM代理的任务计划和工具使用(TPTU)功能的综合框架。我们的框架包括三个旨在应对这些挑战的关键组件:(1)API猎犬在广泛的API集合中选择最相关的API; (2)LLM FineTuner对基本LLM进行调整,以增强其在任务计划和API调用方面的能力; (3)演示选择器检索与难以区分的API相关的演示,该演示进一步用于秘密学习以提高最终性能。我们使用现实世界中的行业系统和开源的学术数据集验证我们的方法,证明了每个组件以及集成框架的功效。
机械师,柴油发动机;机油发动机,钳工维修服务和大修柴油机或油发动机,以高效性能,以驱动机械和设备。使用各种工具和仪器检查引擎以找到缺陷。将其拆除或部分拆除,以去除损坏或磨损的零件并更换或修理它们。磨碎阀门并组装零件,根据需要进行补充工具和其他功能,以确保拟合的准确性。将组装或维修的发动机安装在适当的位置,并将皮带轮或车轮连接到推进系统。启动发动机,对其进行调整并观察性能注意不同的仪表读数,例如温度,燃油水平,油压等。并将其设置为指定的标准以获得最佳性能。定期检查,调整和润滑引擎,并执行其他功能以使引擎保持良好的工作状态。可能会焊接或燃烧零件和服务柴油燃油泵和喷油器。此外,由于柴油发动机开始合并电子组件,因此程序通常使学生有机会在电气系统和计算机诊断软件中参加课程。计划并组织指定的工作,并在其自身工作区域执行期间在定义的限制内执行和解决问题。展示了可能的解决方案并同意团队内的任务。以所需的清晰度进行交流并了解技术英语。对环境,自学和生产力敏感。参考NCO-2015:
2 Opto-Electrochemical Sensing Research Team (OEC), Spectroscopic and Sensing Devices Research Group (SSDRG), National Electronics and Computer Technology Center (NECTEC), Pathum Thani 12120, Thailand E-mail: a pundharika.n@gmail.com, b sakoolkan.boonruang@nectec.or.th, c,* wsoliman@gmail.com(通讯作者)摘要。本文介绍了柔性引导模式共振(GMR)结构的理论分析,其配置具有增强的折射率聚合物纳米复合材料,其中涂有原始聚合物制成的铸造或烙印的银纳米颗粒。控制嵌入式纳米颗粒(NP)的体积分数和膜厚度都调整了设备灵敏度,以用于在机械横向应变检测中应用。工作引入了在有效索引中修改散射矩阵方法(SMM)的使用,以准确预测共振波长峰。结果显示了与严格的耦合波分析(RCWA)的良好一致性,尤其是对于基本指导模式和衍射之间的相位匹配条件。灵敏度是通过横向应变引起的光栅周期来计算的,并将其与产生的波长偏移相关。使用SMM进行共振波长计算,将计算成本降低了144倍,同时与RCWA和有限差频域方法(FDFDM)保持了良好的一致性。关键字:柔性指南模式共振(GMR),嵌入式纳米颗粒(NP),散射矩阵方法(SMM),严格的耦合波分析(RCWA)。
化学替代通常用于探索材料中的新基础状态,但疾病的作用经常被忽略。在MN取代的BAFE 2 AS 2(MNBFA)中,尽管在标称孔掺杂相的相位观察到了超导性(SC)。相反,出现了玻璃磁相,与S = 5 /2 MN局部自旋相关。在这项工作中,我们使用角度分辨光发射光谱(ARPES)对MNBFA的电子结构进行了全面研究。我们发现MN会导致电子口袋的小且特异性的降低,仅部分破坏了嵌套条件。基于对光谱特性的分析,我们观察到所有频段,电子散射速率随MN含量的函数的增加。这被解释为增加的带不连贯性,我们认为这是抑制MNBFA磁顺序的主要因素。此发现将MNBFA电子带结构的特性与这些材料中观察到的玻璃磁性行为联系起来,并表明由于散布了Fe衍生的激发的集体磁杂质行为,因此不存在SC。此外,我们的分析表明,自能量[IM(E B)]虚拟部分的结合能(E B)依赖性通过分数缩放(IM(E B)∝√-E B)最好描述。这些结果表明,MN将MNBFA调为Bafe 2 AS 2中相关的Hund的金属与BAMN 2 AS 2中的Hund的绝缘体之间的MNBFA变为电子障碍相。