III-V 半导体带隙性质和大小的改变对于光电应用具有重要意义。应变可用于系统地在很宽的范围内调整带隙,并引起间接到直接 (IDT)、直接到间接 (DIT) 和其他带隙性质的变化。在这里,我们建立了一种基于密度泛函理论的预测从头算方法来分析单轴、双轴和各向同性应变对带隙的影响。我们表明系统性变化是可能的。对于 GaAs,在 1.52% 各向同性压缩应变和 3.52% 拉伸应变下观察到 DIT,而对于 GaP,在 2.63 各向同性拉伸应变下发现 IDT。我们还提出了一种通过将双轴应变与单轴应变相结合来实现直接-间接转变的策略。确定了应变 GaSb、InP、InAs 和 InSb 的进一步转变点,并与元素半导体硅进行了比较。因此,我们的分析为二元 III-V 半导体中的应变诱导带隙调整提供了一种系统且可预测的方法。
抽象的感觉系统基于传达准确信息的可靠性优先加强对刺激的响应。先前的报告表明,大脑会根据可靠性的动态变化来重新获得线索,但大脑如何学习和维持对预期会随着时间稳定的感觉统计数据的神经反应是未知的。谷仓猫头鹰的中脑具有听觉空间的地图,神经元在其中计算从室内时间差(ITD)计算水平声音位置。中脑图神经元的频率调整与神经元首选ITD的最可靠频率相关(Cazettes等,2014)。去除面荷兰,导致高频从额叶空间的可靠性降低。直接测试ITD可靠性驱动频率调整是否永久变化,从成年猫头鹰记录了中脑图神经元,在发育过程中除去了面部荷兰和幼体猫头鹰,在面部ruff发育之前,掉了幼体猫头鹰。在两组中,将正面调谐的神经元调整为低于正常成年猫头鹰的频率,这与ITD可靠性的变化一致。此外,少年猫头鹰表现出更异质的频率调整,这表明正常的发育过程优化调整以匹配ITD的可靠性。这些结果表明,空间线索的长期统计数据在中脑频率调整属性的发展中,实施概率编码声音定位。
具有维持其磁化能力的永久磁铁,即,在高温下,称为强制性的证券是为服务快速生长的清洁能源技术(例如电动汽车和风能)服务的关键材料。[1-3]但是,改善当前使用的NDFEB和SMCO 5磁体的高温磁性特性是具有挑战性的。为了进一步提高工作温度,固定型磁体,其中固定性是由晶粒内纳米沉淀物在纳米沉淀物上的固定固定而产生的,是最有吸引力的候选者。[4-6]例如,由于其高质量温度和出色的温度稳定性,因此SM 2 CO 17的磁铁是在300°C以上使用的电动机中使用的唯一可以使用的罐。[7–11]通常认为其矫正性是由谷物内的纳米级细胞微结构而仅通过域钉钉来控制的
镁空气燃料电池(MAFC)是一种混合系统,结合了燃料电池和电池的设计,需要持续更换阳极和电解质才能运行。MAFC应用程序限制了短期高功率应用,例如紧急和便携式电源。因此,这项研究的重点是通过研究电解质体积,电极位置和电解质浓度对MG -Air燃料电池性能的影响。从电解质体积变化开始,进行了三组实验。然后,将其应用于细胞配置中,以测试具有不同电极位置的MAFC性能。最后,最佳的电极位置与所选电解质一起应用于新的修饰MAFC,以研究电解质浓度对MAFC性能的影响。发现表明,电解质体积对性能并不重要,而较高的NaCl浓度可以显着提高MAFC的性能。10 wt%的NaCl产生的最高功率密度为38.95 mW.cm -2,工作电压为1.67V。不幸的是,在较高的NaCl浓度下观察到较高的腐蚀速率。最后,添加磷酸钠作为腐蚀抑制剂可抑制腐蚀反应并降低腐蚀速率。
最能从该软件中获益的发电厂位于严格管制或排放受限的地区,例如欧洲、美国和加拿大,或任何天气模式不稳定的地方。此外,任何受燃料质量变化问题影响的站点或希望通过减少手动调整和燃料消耗来降低运营和维护 (O&M) 成本的站点都将受益。发电厂已实现一氧化碳减少 14%,一氧化二氮排放量减少 10% - 14%;燃料和二氧化碳减少 0.5% 至 1%。
摘要:3DNA 有望成为一种药物载体,药物可插入其核心或连接到表面臂。将 3DNA 与靶向细胞间粘附分子 1 (ICAM-1) 的抗体偶联可导致体内肺特异性生物分布高。虽然已经研究了其他纳米载体中各个参数对 ICAM-1 靶向性的作用,但从未对 3DNA 进行过研究,也从未以能够揭示所述参数之间层次相互作用的方式进行过研究。在本研究中,我们使用 2 层和 4 层抗 ICAM 3DNA 和放射性示踪来检查小鼠的生物分布。我们发现,在饱和条件下和测试范围内,与每个载体上的抗体数量、总抗体剂量、3DNA 剂量、3DNA 大小或给药浓度相比,3DNA 上靶向抗体的密度是驱动肺靶向而非肝清除的最相关参数,这些参数影响器官中的剂量,但不影响肺特异性与肝清除率之比。数据预测,可以使用这种生物分布模式调整插入(核心负载)药物的肺特异性递送,而臂连接(表面负载)药物的递送需要仔细的参数平衡,因为增加抗 ICAM 密度会减少可用于药物负载的 3DNA 臂的数量。
摘要:道路网络提取是遥感(RS)中的重要挑战。解释RS图像的自动化技术提供了一种具有成本效益的解决方案,可快速获取道路网络数据,超过传统的视觉解释方法。然而,道路网络的各种特征,例如不同地区的各个长度,宽度,材料和几何形状,构成了RS图像中的道路提取的巨大障碍。可以将道路提取问题定义为涉及捕获上下文和复杂元素的任务,同时还保留边界信息并为RS数据生成高分辨率的道路细分图。提议的Archimedes调整过程的目标量子量子扩张了道路提取的卷积神经网络(ATP QDCNNRE)技术是通过增强图像细分结果的效率来解决上述问题,从而利用遥感成像,与Archimedes Optimization Optimation Algorith Modecs(AOA)相关联(AOA)。这项研究的发现证明了与遥感图像一起使用时,ATP-QDCNNRE方法实现的道路萃取能力增强。ATP-QDCNNRE方法采用DL和超参数调整过程来生成高分辨率的道路分割图。这种方法的基础在于QDCNN模型,该模型结合了量子计算(QC)概念和扩张的卷积,以增强网络捕获本地和全局上下文信息的能力。扩张的卷积还可以增强接收场,同时保持空间分辨率,从而提取精细的道路特征。基于ATP的高参数修改改善了QDCNNRE道路提取。评估ATP QDCNNRE系统的有效性,使用基准数据库来评估其仿真结果。实验结果表明,ATP-qdcnnre以75.28%的相交(IOU)的相交(MIOU)的平均相交(MIOU)为95.19%,F1的平均相交,90.85%的F1,精度为87.54%,召回了Massachusetts Road DataSet的94.41%。与最新方法相比,这些发现证明了该技术的效率。
最近已经证明了Terahertz(THz)发射量子级联激光(QCL)梳子的全相控制,即使是最苛刻的应用,也为新的视角开辟了新的观点。在此框架中,简化控制这些设备的设置将有助于加速其在许多领域的传播。这项研究报告了一种使用非常简单的实验设置来控制THZ QCL梳子的发射频率的新方法,从而利用了普通的白色光发射二极管的不相干发射。在这些条件下可访问的略有扰动式允许调整半导体的复杂折射率,而不会破坏宽带激光增益。软执行器的表征并与另一个执行器(QCL驱动电流)进行了比较。显示了这种额外的自由度对于频率和thz QCL梳子的相位稳定的适用性,并讨论了观点。
非经典因果模型是为了解释违反贝尔不等式而开发的,同时遵循相对论因果结构和可靠性——即避免微调因果解释。最近,基于维格纳朋友思想实验的扩展,得出了一个可以被视为比贝尔定理更强的不通定理:局部友好 (LF) 不通定理。在这里,我们表明,即使考虑非经典和/或循环因果解释,LF 不通定理也对因果模型领域提出了巨大的挑战。我们首先将 LF 不等式(LF 不通定理的关键元素之一)重新定义为源于统计边际问题的一夫一妻制关系的特殊情况。然后,我们进一步将 LF 不等式重新定义为因果兼容性不等式,它源于非经典因果边际问题,其因果结构由有理有据的因果形而上学假设所暗示。我们发现,即使允许观察到的事件的潜在原因接受后量子描述(例如在广义概率论或更奇特的理论中),LF 不等式仍会从这种因果结构中出现。我们进一步证明,没有非经典因果模型可以在不违反无微调原则的情况下解释 LF 不等式的违反。最后,我们注意到,即使诉诸循环因果模型,也无法克服这些障碍,并讨论了因果建模框架进一步扩展的潜在方向。
solid-state Li-S batteries. By hybridizing two-dimensional carbon nitride and N-doped graphene to form CNG with a very high N content, argyrodite decomposition is largely suppressed, which computational and experimental studies show occurs through strong Li-N binding at the solid electrolyte-sulfur host interface. We propose this inhibits the initial oxidation of argyrodite in the indirect process, kinetically limiting Li-ion extraction, and shifting the potential for sulfide ion conversion to sulfur in the first step. This improves SSSB cycling performance by diminishing the build-up of insulating decomposition products at the interface, unlike experienced by carbon materials such as VC and NG. The CNG sulfur