分别安装在旋转窑的上游和下游。当前的水泥植物使用多阶段的旋风预热器在到达窑炉之前将原材料混合物预热。随着预热阶段的数量增加,植物的废热电位也会减少。典型的预热排气温度在280oC至450oC之间,典型的AQC排气温度从250oC到330oC不等。发电的范围从25kWh/t到WHR应用的熟料的45kWh/t。我们的蒸汽轮机在全球水泥厂成功运作,从而产生了废热的动力;无论是棕地还是格林菲尔德水泥植物建筑,Triveni都有专业知识,可以提出蒸汽轮机解决方案来推动客户成功。这是印度安装22 MW蒸汽轮机的案例。自2020年8月以来,蒸汽轮机发电机一直在可靠地运行,并允许主要水泥播放器以全容量运行(每年700万吨),从而降低了对电网的依赖,并提高了工厂的收益和效率。
水电行业目前正在经历多项技术发展。新技术和实践不断涌现,使水电更加灵活和可持续。最近还开发了新材料来提高性能、耐用性和可靠性;然而,在文献中找不到系统的讨论。因此,本文介绍了用于水电应用的新材料,并讨论了它们的性能、优势和局限性。例如,复合材料可以将钢制设备的重量减轻 50% 至 80%,聚合物和超疏水材料可以将水头损失减少 4% 至 20%,新型轴承材料可以将轴承磨损减少 6%。这些改进决定了更高的效率、更长的使用寿命、减少浪费和维护需求,尽管某些材料的初始成本与传统材料的成本相比尚不具有竞争力。本文根据以下类别描述了新材料:用于涡轮机、水坝和水道、轴承、密封件和海洋水电的新材料。2021 作者。由 Elsevier LTD 代表中国工程院和高等教育出版社有限公司出版。本文为 CC BY-NC-ND 许可下的开放获取文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
项目委员会 教授 Dietmar K. Hennecke 博士 M. le Professeur Jacques Chauvin Ing.克劳迪奥·芬奇 (主席) Laboratoire d'Energetique et de FIAT Aviazione spa Fachgebiet Flugantriebe Micanique des Fluides Progettazione Technische Hochschule Darmstadt Internes (LEMFI) Corso Ferrucci 112 Petersenstrasse 30 Campus Universitaire 10138 Torino, Italy W-6100 Darmstadt。德国 Bt 502 91405 Orsay Cedex,法国 Mr William W. Wagner Dr Robert Bill 技术总监(代码 07) 美国陆军推进局 Mr David P. Kenny 海军空气推进中心 NASA Lewis 研究中心主任,分析工程 PO Box 7176 Mail Stop 77-12 Pratt and Whitney Canada, Inc. 特伦顿。新泽西 08628-0176 21000 Brookpark Road 1000 Marie-Victorin 美国 俄亥俄州克利夫兰 44135 Longueuil。 加拿大魁北克 美国 David Way 先生 Jose J. Salva Monfort 教授 涡轮机械主管 Frans Breugelmans 教授 推进技术高等学院 涡轮机械系主任 Ingenieros Aeronauticos 国防研究机构 助理主任 Plaza Cardenal Cisneros 3(航空航天部门) RAE von Kirman 研究所 28040 马德里。 西班牙 Pyestock。 Farnborough,流体动力学 Hants GU14 OLS 72 Chaussee de Waterloo 英国 1640 Rhode St Gen•se,比利时
风力涡轮机 (WT) 利用风能发电。因此,对风力涡轮机的控制和经济高效的运行进行了研究。控制系统具有使用寿命长、能量输出最大和安全性高等特点。在控制方法和控制策略方面,讨论了限制和优化能耗的各种方法。风力发电的整合可能会损害瞬态系统的稳定性。异步感应发电机无法处理风能应用中产生的无功功率。WT 通常设计为可承受恶劣天气,但不能承受高速度或高扭矩。强大的气动扭矩或转速能够破坏 WT 叶片。为了防止这种情况发生,WT 始终具有一个切断速度,超过此速度时,涡轮机将通过制动器停止运转。当过大的风速危及涡轮机的安全时,WT 会采用一系列控制技术。因此,所有 WT 均采用功率控制方法构造。这可以调节俯仰和失速。WT 可以应用被动或主动失速控制。因此,本研究分析了相关技术、风力涡轮机的维护、成本、多种类型的风力涡轮机控制器以及风能行业特有的负面影响和障碍。
未来的风力涡轮机设计必须包括风洞测试,以产生用于设计的高质量实验数据。这些实验数据(包括翼型和整体系统性能)可用于验证和改进风力涡轮机叶片和系统的设计。目前,风力涡轮机的实验测试很少,大部分空气动力学设计都是使用 PROFIL 和 XFOIL 等计算工具完成的。计算流体动力学 (CFD) 预测正在改进,将成为风力涡轮机叶片设计的杰出工具;但是;这些代码不够稳健,无法预测低雷诺数下的性能。风力涡轮机的 CFD 代码几乎没有经过实验室验证,尤其是低雷诺数的 CFD 代码。通常,风力涡轮机都是按全尺寸设计和制造的。因为风洞测试通常是在现场测试,以与设计预测进行比较。然而,现场测试也可能是一个非常昂贵的过程。本章将重点介绍对风力涡轮机叶片进行实验测试的必要性,以确定在典型雷诺数下运行的翼型升力和阻力数据,以及对风力涡轮机系统(叶片和发电机)进行测试以确定整体风力涡轮机性能。这种类型的测试应该在建造全尺寸机器之前完成,因为通过风洞测试可以达到更好的设计。叶片元素动量理论 (BEMT) 通常用于小型风力涡轮机的设计,这种设计方法在很大程度上取决于精确的翼型数据的使用。因此,对于小型风力涡轮机,在适当的雷诺数下获取的高质量实验翼型数据对于准确设计和预测发电量是必不可少的。所呈现的数据适用于风洞
压缩空气储能 (CAES) 系统在可再生能源的有效储存和利用中起着关键作用。本研究深入了解了不同涡轮机类型在三种 CAES 子技术 (D-CAES、A-CAES 和 UW-CAES) 中的应用及其与存储大小的关系。全面的文献综述和分析揭示了轴流式涡轮机、径向涡轮机和准涡轮机在不同 CAES 系统中的广泛应用。还探讨了存储大小与涡轮机选择之间的相关性,强调了大型系统中对轴流式涡轮机的偏好以及小型和微型 CAES 系统中对径向涡轮机的偏好。然而,本研究也存在一些局限性,主要是缺乏对实际运行条件下涡轮机性能的深入分析,特别是在处理变化的负载和不稳定的压力条件时。此外,由于文献资源有限,没有讨论中型 CAES 系统。未来的研究应侧重于解决这些限制,以增强涡轮机在 CAES 系统中的应用和优化。总之,深入研究CAES技术及其关键组件对于实现未来更加可持续、高效的能源系统至关重要。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
带罩小型风力涡轮机 作者:Kristen Flannery、Michael Holligan、Joseph Soares 提交的论文部分满足了圣克拉拉大学工程学院机械工程理学士学位的要求,2014 年加利福尼亚州圣克拉拉
研究小组和行业使用风力涡轮机和风力发电厂的系统建模框架来设计风能系统,这些系统考虑了涡轮机和工厂层面的性能、成本和可靠性之间的关键权衡。这些框架使用各种多学科设计、分析和优化方法进行实施。为了提高互操作性和促进合作,本报告提出了一个沿着模型保真度和范围维度的框架分类系统。该分类系统首先受到对综合风力涡轮机和工厂模拟软件框架开发的最新进展的回顾。在每个主要的风力涡轮机和发电厂子系统中,都会为所使用的学科和每个学科可以建模的保真度级别开发一个矩阵。然后根据矩阵对现有框架进行分类。接下来,提出了一个本体,允许标准化框架中使用的最常见的学科保真度组合之间的数据传输方式。数据的通用表示可以实现以下功能:(1) 共享系统描述和分析结果,支持更透明的基准和比较,以及 (2) 将模型集成到组织内部和跨组织的工作流中,以提高风力涡轮机和发电厂设计流程的效率和性能。最终,这种集成将带来更好的整体风能系统设计,具有高性能和低成本。