人工智能系统是计算机程序,允许计算机以使其看起来具有智能的方式运行。英国数学家艾伦·图灵(1950 年)是现代计算机科学和人工智能的先驱之一 [ 4 ]。他认为计算机的智能行为有能力在认知活动中表现出人类水平的表现,后来被称为“图灵测试” [ 5 , 6 ]。图灵测试是人工智能和认知科学中最具争议的问题之一,因为有些机器可能无法通过他的测试,但它仍然可能是智能的。艾伦·图灵在他 1950 年的《心灵》文章《计算机器和智能》(图灵,1950 年)中提出了图灵测试(TT),取代了“机器能思考吗?”的问题。[ 7 ] 图灵工作的目标是提供一种机制来确定计算机是否可以思考。他的论文被视为人工智能(AI)的“起点”,而 TT 则被视为其最终目标。他进一步提出了模仿游戏,为这个想法赋予了具体形式 [8, 9, 10, 8]。
现代计算的抽象基础是有限状态机(通用图灵机)的正式描述,它基于整数和逻辑符号的操纵。在这篇关于计算机-大脑类比的论述中,我们讨论了哺乳动物大脑执行的模拟计算与通用图灵机的数字计算的相似程度和不同程度。我们从普通现实开始,即连续世界和不连续世界之间的永久对话。计算也是如此,它可以是模拟的,也可以是数字的,而且经常是混合的。计算机背后的理论本质上是数字的,但可以通过模拟设备对现象进行有效的模拟;事实上,任何物理计算都需要在物理世界中实现,因此在某种程度上是模拟的,尽管它基于抽象的逻辑和算术。哺乳动物的大脑由神经网络组成,起到模拟设备的作用,并产生了以数字算法实现但功能与模拟模型相同的人工神经网络。模拟结构通过实现各种反馈和前馈回路来进行计算。相比之下,数字算法允许实施递归过程,从而使其能够产生无与伦比的新兴特性。我们简要说明了神经元的皮层组织如何整合信号并进行类比预测。虽然我们得出结论,大脑不是数字计算机,但我们推测最近在大脑中实现的人类书写可能是一种数字路径,可以慢慢将大脑进化为真正的(慢速)图灵机。
艾伦·图灵开发了图灵测试,作为一种方法来确定人工智能 (AI) 是否能够通过以 30% 以上的置信度回答问题来欺骗人类询问者相信它具有感知能力。然而,图灵测试关注的是自然语言处理 (NLP),而忽略了外观、交流和运动的重要性。本文的核心理论命题:“机器可以模仿人类吗?”既涉及功能性,也涉及物质性。许多学者认为,创造一个在感知上与人类无法区分的逼真的人形机器人 (RHR) 是人类技术能力的顶峰。然而,目前还没有全面的开发框架供工程师实现更高模式的人类模仿,而且目前的评估方法还不够细致,无法检测恐怖谷 (UV) 效应的因果影响。多模态图灵测试 (MTT) 提供了这样的方法,并为在 RHR 中创建更高水平的人类相似性以增强人机交互 (HRI) 奠定了基础
抽象图灵(Turing)进行了众多争论的测试已满70岁,并且仍然存在争议。他的1950年论文被视为复杂且多层的文本,关键问题基本上仍未得到解答。Turing为什么选择从经验中学习作为实现机器智能的最佳方法?为什么他花了几年的时间与国际象棋一起工作,作为一项任务来说明和测试机器智能,只是为了将其交易以进行对话的问题,以便于1950年晚些时候提出问题?Turing为什么在机器智能测试中指的是性别模仿?在本文中,我将通过揭示所谓的图灵测试的社会,历史和认识论根源来直接解决这些问题。我将注意一个历史事实,到目前为止,在二级文献中几乎没有观察到,即图灵(Turing)的1950年测试是出于关于数字计算机的认知能力的争议,最著名的是物理学家和计算机先驱者Douglas Hartree,化学和哲学家Michael Polanyi和Michael Polanyi和Neurosurgeon Jeoffers。从历史背景来看,图灵的1950年论文可以理解为对这些思想家对机器可以思考的一系列挑战的答复。
哲学与图灵(Turing)提出的历史模仿测试(1948-1952)的哲学最佳联系。我将研究图灵的模仿游戏或测试的各种版本的历史和认识论根源,并表明它们是在对话中发出的,实际上是科学的争议,最著名的是与物理学家和计算机先驱者道格拉斯·哈特里(Douglas Hartree),化学家和哲学家Michael Polanyi,Michael Polanyi和Neurosurgeon Geoffrey Jeffery Jeffers。将图灵的观点放在
概念tape tape模拟无限的纸张以进行计算。胶带头读/写在磁带单元格上。向左/向右移动。状态模拟人类思想的状态。最初在磁带上输入有限的符号。在磁带上最终输出有限的符号数。基于规则和输入符号的计算状态过渡。
一、机器会思考 22 1 阿兰·M·图灵(1912-1954):机器的先知....................................................23 1.1 问题和章节结构....................................................................23 1.2 图灵的不敬....................................................................26 1.3 图灵的讽刺....................................................................27 . ... ... . ... ... . ... ... 61 2.3 奇迹:图灵的思维认识论.................................................................................................................................................... 66 2.4 学习:图灵的思维本体论.................................................................................................................................................... 70 2.5 图灵对其假设的现实主义态度.................................................................................................................................................... 76 2.6 对存在主义假设的九种可能的解释.................................................................................................................................... 83 2.7 重新审视图灵的既定观点.................................................................................................................... . ... . ... . .... .... .... .... 125 3.4 “机器能够思考”暗示着一个存在主义假设 . .... .... .... .... .... .... 136 3.5 1949年,关键的一年 . .... .... .... .... .... .... .... .... .... .... .... .... 142 3.6 模仿游戏的内部结构 . .... .... .... .... .... .... .... .... .... .... .... .... 152 3.7 模仿游戏的双重功能 . .... .... .... .... .... .... .... .... .... .... . . . . . 163
自然语言处理,使其能够成功地用英语交流; 知识表示,用于存储它所知道或听到的内容; 自动推理,使用存储的信息来回答并得出新的结论; 机器学习,用于适应新情况并检测和推断模式。图灵测试故意避免询问者与计算机之间的直接物理交互,因为皮尔逊的物理模拟对于智能来说是不必要的。然而,所谓的全面图灵测试包括视频信号,以便询问者可以测试受试者的感知能力,以及询问者将物理对象“通过舱口”的机会。通过将询问者与机器和其他人类参与者隔离开来,测试确保询问者不会受到机器外观或其声音的任何机械特性的影响。然而,询问者可以自由地提出任何问题,无论问题多么狡猾或间接,以努力揭露计算机的身份。例如,询问者可能会要求两名受试者进行一项相当复杂的算术计算,假设计算机比人类更有可能做出正确的回答;为了对抗这种策略,计算机需要知道什么时候它应该无法得到这类问题的正确答案,以便看起来像人类。为了根据情感性质发现人类的身份,询问者可能会要求两名受试者对一首诗或一件艺术品做出反应;这种策略要求计算机了解人类的情感构成。
有人认为,丘奇-图灵假设背后有一个隐含的物理断言。这里,这个断言被明确地呈现为一个物理原理:“每个有限可实现的物理系统都可以被一个以有限方式运行的通用模型计算机完美地模拟”。经典物理学和通用图灵机,因为前者是连续的,而后者是离散的,所以不遵循这个原理,至少不遵循上述强形式。描述了一类模型计算机,它是图灵机类的量子泛化,并表明量子理论和“通用量子计算机”与该原理兼容。原则上可以建造类似于通用量子计算机的计算机,并且它将具有任何图灵机都无法复制的许多显著特性。这些不包括非递归函数的计算,但它们确实包括“量子并行性”,通过这种方法,通用量子计算机可以比任何经典限制更快地执行某些概率任务。这些特性的直观解释给除埃弗雷特之外的所有量子理论解释都带来了难以忍受的压力。本文探讨了计算量子理论与其他物理学之间的众多联系。与经典复杂性理论相比,量子复杂性理论允许对物理系统中的“复杂性”或“知识”进行更合理的物理定义。