极端环境条件,例如温泉,深海水热通风孔和有机堆肥是独特的微生物多样性的储层,为释放具有理想特性的新酶提供了潜力。微生物群落对这些环境条件的适应解释了它们的高基因组和代谢灵活性,并且它们经常用适合许多应用的新型酶编码酶[1]。这项工作的目的是从堆肥元组中搜索CRISPR-Cas9 DNA核酸酶的同源物。此类同源物可能对开发系统来编辑这种人工生物植物的各种细菌的基因可能很有趣。这些酶必须是热耐剂,因为堆肥期间的温度升高到90摄氏度或更多。耐热酶也可以用于编辑从其他极端生物型中分离出的细菌的基因组。使用此类序列的另一个额外奖励可以是使用热稳定的体外DNA编辑系统。对II型CRISPR-CAS9 DNA核酸内切酶的发现的TR(热固态)同源物的一项有趣的基础研究可以是对这些酶的结构研究,用于随后生产基于从堆肥组中提取的氨基酸序列的生物技术具有重要意义的突变体。
摘要 仙人掌属植物(Opuntia ficus-indica (L.) Mill.)是能够耐受恶劣环境条件的最知名农作物之一。南非是少数拥有大量仙人掌种质资源的国家之一,这些种质资源代表了移地保护种群。然而,人们对该种群的遗传多样性知之甚少。此外,一些基因型在形态上不明显,因此,对于新手农民和研究人员来说,识别种质资源中的样本是一项挑战。本研究旨在使用八个简单序列重复 (SSR) 标记来区分和测量代表南非仙人掌种质资源的 44 个栽培品种的遗传多样性。显然,这些品种具有中等水平的多样性(平均多态性信息含量 PIC = 0.37,Nei 无偏基因多样性 = 0.42),可区分 90% 的品种。使用算术平均数 (UPGMA) 的非加权配对法对品种进行分析,发现主要分为三个聚类,而主坐标分析 (PCoA) 则显示,根据品种在农业中的用途,其聚类不明显。
通过使用RAPD(随机扩增的多态性DNA)和ISSR(简单序列重复序列重复序列)进行了10种不同的Grewia optiva家族之间的多样性分析。Grewia Optiva家族是由从喜马al邦(印度)的各个地区收集的种子养育的,并根据形态学参数选择。分别使用15个RAPD和20个ISSR引物和9个RAPD和12个ISSR引物显示放大。9个RAPD引物显示出68.96%的多态性,12个ISSR引物显示出71.25%的多态性。使用NTSYSPC Ver.2.02H的Sahn模块生成相似性矩阵和树状图。jaccard的相似性矩阵显示了与RAPD引物之间的“ SO-7”和“ SO-3”之间的最大相似性系数为0.88。对于ISSR,系数值范围为0.52至0.80。树状图在更大程度上也揭示了相似的结果,在Grewia Optiva收集的10个家族中发现的最大相似性在“ SO-7”和“ SO-3”的RAPD引物之间为88%,与ISSR的“ SO-7”和“ SO-3”之间的“ SO-7”和80%。RAPD和ISSR在10种不同基因型的Grewia optiva中有效揭示了多态性。根据地理分布和遗传构造,RAPD和ISSR的基于UPGMA的树状图证实了不同基因型将不同的基因型放置在不同的簇和子集群中。Family SH-7与RAPD和ISSR研究所揭示的那样发出了Outliner。
摘要:改善埃塞俄比亚的当地鸡肉生产将是实现“零饥饿”,粮食安全和可持续性的优先事项。鸡提供了可以满足人类需求的蛋白质的极好来源。埃塞俄比亚的土著鸡没有选择并改善,因此它们的生产力和生殖性能较低。本研究旨在使用16个SSR标记研究三种埃塞俄比亚本地鸡肉生态型的遗传多样性和种群结构,并将Koekoek品种用作比较。总共检测到97个等位基因,平均值为6.062个等位基因。多态信息内容范围从(0.54)MCW0183到(0.85)LEI0166,平均值为每个位点0.67。在所有研究的人群中,平均观察到的杂合性和预期的杂合性分别为0.026和0.60。Shannon信息索引从(i = 0.83)MCW 0098到(i = 1.57)LEI0166不等。Amova表明,个体内部的遗传差异差异3%,人群中的82%,品种之间的差异为15%。根据UPGMA的说法,Horro和Tilili人群被分组,而Jarso人口则是不同的,而Koekoek的品种则如预期的那样与众不同。研究的人群在人群中显示出较高的遗传多样性,而JARSO生态型显示出最高的遗传多样性和许多独特的等位基因。这一发现中使用的SSR标记是多态性的,可用于确定埃塞俄比亚本地鸡肉生态型的遗传变异。获得的信息将用于遗传保护和国家育种计划工作。
摘要:识别精英和多样化的父母是释放新杂种的过程中的关键步骤。DNA指纹和种质的表征在植物育种中起着重要作用,在植物繁殖中,分子标记已被证明非常有效。当前的研究是在植物分子生物学和生物技术实验室,RMDCARS,Ambikapur(Chhattisgarh)进行的。共有27个SSR引物用于检查十八种新开发的近近近近使的多态性,其中8个被发现是多态性的,随后被用于DNA指纹和分子表征。使用这些多态性SSR引物,总共获得了25个等位基因,平均每个引物为3.13个等位基因。这些引物的PIC值范围为0.10至0.82,其中最高值为引物BNLG 1867。使用不同的带模式和等位基因尺寸的变化生成了每个近交的指纹(ID)。这些指纹数据为玉米的每种近交系列提供了不同的等位基因剖面。也使用具有算术平均值(UPGMA)的未加权对组方法为所有这些近交的树状图制备。它将它们分成五个主要簇,在近84%的遗传相似性中表明观察到的近交性近交中存在遗传变异。这使他们可以进一步利用在未来的繁殖计划中生成异性杂种。在所有研究的近交生中,IAMI-57和IAMI-43-1在遗传上都更加多样化。多态性SSR标记促进了基因型之间的歧视,并为改善这些基因组资源的未来使用提供了宝贵的信息。
在马来西亚种植了多种芒果品种数十年,水果对全国的交易产生了重大影响。Harumanis在口味和质量方面是最杰出的芒果品种,导致每公斤高达8.57美元的优质价格。由于类似的形态特征,这引发了欺诈以替换较便宜的芒果品种,例如Tong Dam和Susu。形态学特征通常用于区分Harumanis芒果与其他品种,尽管它效率低下,稳定且受环境因素的影响不佳。这项研究旨在评估三种芒果品种中的遗传多态性,并评估保守DNA衍生多态性(CDDP)作为区分Harumanis和非Harumanis Mango样品的DNA标记的潜力。总共研究了15个Harumanis和非Harumanis芒果样品。通过一组14个芒果样品样品的六个CDDP引物扩增了总共371个带。所有六个引物观察到的多态性百分比高于65%。底漆WRKY-R1显示出最高的多态性百分比和多态性信息含量,分别为100%和0.44,使其成为该研究中最有效的CDDP底漆,可在这项研究中区分Harumanis和非Harumanis芒果品种。底漆WRKY-F1在8.57时表现出最高的分辨能力值,最多的基因座数为15。基于CDDP数据构建的UPGMA树状图显示,将14个样品分组为四个主要簇,其中各种不同的品种形成了自己的包装。这项研究表明,CDDP标记可以有效地用于表征不同芒果基因型和遗传多样性分析中,从而促进了领先的Harumanis芒果的DNA指纹的发展,以及对马来西亚芒果水果的更好管理。
1207,孟加拉国 电子邮件:kashpia_tas@live.com 摘要 — 收集和表征地方基因型和地方品种是任何作物改良计划的先决条件。分子多样性和 DNA 分析显示了任何作物的确切基因蓝图。因此,该实验旨在确定一些地方茄子基因型及其野生近缘种之间的分子多样性和多态性,以供未来的育种计划使用。该实验在孟加拉国达卡的 Sher-e-Bangla 农业大学生物技术实验室进行,使用了 25 种茄子地方品种和 2 种野生近缘品种(Solanum sisymbriifolium 和 S. villosum),以研究这些基因型的分子多样性和 DNA 指纹。五个众所周知的 SSR 引物(EPSSR82、smSSR01、EM114、EM120 和 smSSR04)用于基因型的分子表征。分离出具有 27 种基因型的优质 DNA,并使用这些引物进行 PCR 扩增。扩增的 DNA 片段通过 2% 琼脂糖凝胶显影,并通过 POWERMAKER(版本 3.25)和 NTSYS-PC(版本 2.2)分析数据。总共产生了大约 10 个不同的等位基因,每个基因座的范围为 1 至 3 个等位基因,平均为 2.0 个等位基因。在引物 EPSSR82 和 smSSR01 中观察到了最多的多态性带数(2)。SSR 标记的多态性信息含量 (PIC) 范围为 0.37 至 0.67,平均值为 PIC = 0.54。基因多样性范围从 0.49(smSSR01)到 0.72(EPSSR82),平均值为 0.61。 UPGMA 方法将 27 种基因型分为两个主要簇(I 和 II)。在这些簇中,野生种 Solanum villosum 属于亚簇(IIb),显示出与其他品种的明显差异。另一方面,野生种 Solanum sisymbriifolium 与 13 种地方茄子基因型形成同一簇,显示出密切的亲缘关系。在 25 种地方茄子种质及其野生近缘种中鉴定了分子多样性和 DNA 分析。
通过CTAB方法提取,这是一种获得高质量DNA的公认方案。量化DNA样品,以确保通过25 SSR引物扩增的一致模板浓度。PCR扩增,然后进行琼脂糖凝胶电泳,以分离和可视化SSR带模式,然后根据频带的存在或不存在二进制矩阵格式记录。在所使用的SSR引物中,有9个是多态性的,产生了13个可记分标记,突出了基因型之间的遗传变异性。跨SSR基因座的多态性信息含量(PIC)值,XTXP145基因座的最高PIC值为0.998,表明其在基因型之间区分的高歧视能力和信息性。遗传相似性指数,并通过使用算术平均值(UPGMA)方法对数据进行群集分析。所产生的树状图将基因型分为七个主要簇,以50%的相似性阈值分组,强调了所研究的高粱基因型中存在的遗传多样性。群集I包含单个基因型SVD-1272R,而群集II包括七个具有亚集群形成的基因型。群集III包括一个未分组的基因型SPV-486。群集IV包括八种基因型,而簇V,VI和VII均包含一个单一的未分组基因型。该树状图说明了高粱基因型之间的遗传多样性和关系,基于相似性指数。1。这项研究的结果证实了SSR标记在评估遗传多样性方面的功效,并强调了它们在旨在提高干旱耐受性的繁殖计划中的潜在效用。关键字:高粱; SSR;图片底漆;相似性指数。简介高粱[高粱双色(L.)Moench],被称为“小米之王”,其谷物尺寸较大,是Kharif(Rainy)和Rabi(Postrainy)季节种植的一种关键谷物作物。在印度,马哈拉施特拉邦,卡纳塔克邦和安得拉邦是产生高粱的主要国家,占国家产出的80%,占全球生产的约16%。尽管只有5%的高粱区域被灌溉,但毛毛高粱对于印度半岛的雨林地区至关重要。干旱应力对高粱的生理和生化过程产生负面影响,需要改善干旱耐受性特征,例如根生长,叶片发育和用水效率[2]。然而,由于谷物填充和圆锥花槽大小的应力程度相互作用,这些特征的表型选择是复杂的[3]。要应对这些挑战,评估高粱基因型的遗传多样性[4]和干旱耐受性至关重要[5]。栽培物种中的遗传多样性是提高作物生产率和质量以及发展耐药性品种的宝贵资源。分子标记物,尤其是简单的序列重复(SSR),为评估遗传变异和鉴定耐旱基因型提供了强大的方法[6]。SSR标记,由于其高可重现性和多重变化,对于基因组映射和标记 -