a.2会议会议记录[C1] Zelun Kong,Minkyung Park,Le Guan,Ning Zhang和Chung Hwan Kim,Tz- DataShield:通过基于Data-flow的嵌入式系统的自动数据保护,基于数据流界面,在32nd网络和分布式系统secu-rity semposium(nds sans sans sanss sansssemposium of 32nnd网络和分布式sans sans sans 2025)中。[C2] Ali Ahad,Gang Wang,Chung Hwan Kim,Suman Jana,Zhiqiang Lin和Yonghwi Kwon,Freepart:通过基于框架的分区和ISO的硬化数据处理软件,在第29届ACM国际ACM国际港口端口的ACP-SAN GRANAGE和SAN GONGRAMES MANERASS(SAN GONGIASS ACMAGES和SANG)会议上(作为SANGOMESS和SAN GRANEMASE CALGAIGS ACM ACM INGRAMES)(以及202) 2024)。[C3]小吴,戴夫(jing)tian和Chung Hwan Kim,在第14届ACM云composium cloud composium的会议记录中,使用CPU安全的飞地建造GPU TEES(SOCC 2023)(SOCC 2023)(SOCC 2023)(SACH CRUBE)(CA,CA,20233)。[C4] MD Shihabul Islam,Mahmoud Zamani,Chung Hwan Kim,Latifur Khan和Kevin Hamlen,在第13届ACM ACM ACM会议会议上,与ARM Trustzone的无信任边缘进行深入学习的机密执行有关数据,应用程序安全和隐私(Copaspy 20223),NC,NC,NC,NC,NC,NC,NC,nc,nc,nc,nc,nc,nc,nc ort trustzone(nc)。[c5] Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim, DriveFuzz: Discovering Autonomous Driving Bugs through Driving Quality-Guided Fuzzing, in Proceedings of the 29th ACM Conference on Computer and Communications Security (CCS 2022) (Los Angeles, CA, 2022).[C11] Taegyu Kim,Chung Hwan Kim,Altay Ozen,Fan Fei,Zhan Tu,Xiangyu Zhang,Xinyan Deng,Dave(Jing)Tian和Dongyan Xu,从控制模型到程序:[C6] Kyeongseok Yang ∗,Sudharssan Mohan ∗,Yonghwi Kwon,Heejo Lee和Chung Hwan Kim,海报:在第29届ACM Commutity and Communications Secutlies Capecation和Communications Secutlies CACS 2022222222222222222222222222222222年,(ccc cc cc cc cc cc cc cc cc cc cc cc cc cc ccs 2022222222222222222222222222222222222222) 贡献。[c7] Taegyu Kim, Vireshwar Kumar, Junghwan “John” Rhee, Jizhou Chen, Kyungtae Kim, Chung Hwan Kim, Dongyan Xu, and Dave (Jing) Tian, PASAN: Detecting Peripheral Ac- cess Concurrency Bugs within Bare-metal Embedded Applications, in Proceedings of the 30th USENIX Security研讨会(USENIX Security 2021)(虚拟事件,2021)。[C8] Omid Setayeshfar,Junghwan“ John” Rhee,Chung Hwan Kim和Kyu Hyung Lee找到了我的懒惰:在第18届会议会议上,在第18届会议会议上,关于对侵犯和漏洞和恶意和恶意评估的第18届会议会议上,对真实企业计算机如何跟上软件更新比赛的自动比较分析(dirnerability cestions 2021)(dimva 2021)(dirneva)(dimva 202)。[c9] Kyungtae Kim, Chung Hwan Kim, Junghwan “John” Rhee, Xiao Yu, Haifeng Chen, Dave (Jing) Tian, and Byoungyoung Lee, Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors, in Proceedings of the 11th ACM Symposium on Cloud Computing (SOCC 2020) (Virtual Event, 2020).[c10] Yixin Sun, Kangkook Jee, Suphannee Sivakorn, Zhichun Li, Cristian Lumezanu, Lauri Korts-Pärn, Zhenyu Wu, Junghwan Rhee, Chung Hwan Kim, Mung Chiang, and Prateek Mittal, Detecting Malware Injection with Program-DNS Behavior, in Proceedings of the 5th IEEE European安全与隐私研讨会(Euros&P 2020)(虚拟事件,2020年)。
我们在本文中解决了我们的经验培训和测试恶意URL检测系统。我们的研究受到一系列技术和安全开发的启发。首先,互联网已成为一个更危险的环境。Smanteme宣布2011年的网络威胁一年增长了36%。每天大约相当于4,500次新攻击。推出新攻击的速度远远超过了传统的反恶意软件工具的功能。第二,移动网络数据的个人和业务使用都大大提高。smanteme在其2012年的灵活性调查中观察到,虽然智能手机曾经在很大程度上被它禁止,但现在有成千上万的工人使用它们。结果,攻击者的攻击人群不仅扩大了,而且从商业或财务的角度包含了一个潜在吸引人的社区。
摘要:旨在通过伪装成可信赖的实体来欺骗用户剥夺敏感信息的网络钓鱼攻击是数字景观中的重大威胁。检测网络钓鱼URL(统一的资源定位器)对于保护在线用户和保护敏感数据至关重要。传统的网络钓鱼检测方法,通常依靠手动黑名单和启发式方法,努力与攻击者快速发展的策略保持同步。本研究探讨了机器学习技术以改善网络钓鱼URL的检测,利用其从数据中学习的能力并识别指示网络钓鱼活动的模式。我们为使用机器学习算法的网络钓鱼URL检测提供了强大的框架,结合了特征提取技术和分类模型。我们的方法涉及从URL中提取关键特征,包括词汇特征,基于域的特征和URL元数据。这些功能是各种机器学习分类器的输入,包括逻辑回归,支持向量机(SVM),随机森林和梯度提升等。
恶意网络近年来,随着移动设备的使用越来越多,将几乎是现实世界的运营转移到网络世界的趋势越来越大。尽管这使我们的日常生活变得容易,但由于互联网的匿名结构,它也带来了许多安全漏洞。使用的防病毒程序和防火墙系统可以防止大多数攻击。但是,经验丰富的攻击者试图用伪造网页向他们进行融合,以针对计算机用户的弱点。这些页面模仿了一些流行的银行业务,社交媒体,电子商务等。网站要窃取一些敏感信息,例如用户ID,密码,银行帐户,信用卡号等。网络钓鱼检测是一个具有挑战性的问题,在市场上提出了许多不同的解决方案,作为黑名单,基于规则的检测,基于异常的检测等。在文献中,可以看出,由于其动态结构,目前的作品倾向于使用基于机器学习的异常检测,尤其是捕捉“零日”攻击。在本文中,我们通过使用八种不同的算法来分析URL,并提出了一个基于机器学习的网络钓鱼检测系统,以及三个不同的数据集将结果与其他工作进行比较。实验结果描述了
Advancing the Customer Journey: Sustainable and Technological Innovations in Fashion - Visual Similarity Discovery with Gpt-4, A Comparative Study in Fashion Product Recommendations 08/01/2024 16:00 Link Marton Beck Title 08/01/2024 16:00 Link Miguel Sargento Costa Transformers in Healthcare: Improving Decision Support Systems with Text Analysis 08/01/2024 16:15 Link Leon Kischbaum The New领导力边界:评估数据驱动策略和可持续实践的作用08/01/2024 16:45链接链接Stefano Colasanti Equity Equity研究:ENI-将主要能源行业的挑战与财务可持续性08/01/2024 17:00 17:00 Link francesco Campanella Equity研究: Deffur情商和道德领导:范围评论08/01/2024 17:00 Link Eva Luisa Castro Fisahn年轻一代如何看待Hugo Boss,以及他们如何改善与他们的关系?08/01/2024 17:15链接
以高风险行业(例如财务或医疗保健)的高风险行业运营的跨国公司,其中数据安全至关重要。该公司的一名员工收到的电子邮件似乎来自值得信赖的合作伙伴。该电子邮件包含一个URL,敦促收件人验证敏感帐户信息。虽然URL似乎一目了然,但它是一个精心制作的网络钓鱼链接,旨在窃取登录证书。传统的安全系统可能无法将URL识别为恶意,因为它与真实领域的相似性及其缺席现有黑名单。但是,该公司的电子邮件安全系统配备了拟议的基于CNN的恶意URL检测模型。收到电子邮件后,系统会自动分析URL,提取和评估其结构和语义功能。与常规方法不同,基于CNN的模型标识了微妙的不规则性,例如意外的字符模式和异常的子域结构,将URL标记为潜在的恶意。系统然后立即隔离电子邮件,以防止其到达员工收件箱。将通知发送给网络安全团队,该团队调查并确认了网络钓鱼尝试。同时,将URL添加到共享威胁情报数据库中,帮助其他组织避免陷入同一攻击的受害者。此实时应用程序强调了基于CNN的模型在主动识别和减轻网络安全威胁,保护敏感信息以及增强对数字交互的信任方面的变革潜力。这种全面和积极主动的方法强调了采用先进的深度学习技术来应对数字优先世界中网络安全的不断发展的挑战。在不断扩展的数字景观中,恶意URL的兴起成为对网络安全的关键威胁,影响个人,组织甚至政府。网络罪犯不断开发新的方法来利用漏洞,制造传统的检测机制,例如黑名单和基于规则的算法,对用户的使用量越来越低。这些常规方法通常无法跟上新兴威胁的量增加和动态性质的增加,因此恶意URL的流行率不断增加,这导致了各种检测方法的发展,每种方法的效力都不同。这种比较分析探讨了三种关键方法:黑名单,机器学习模型和拟议的深度学习方法。
摘要由于对个人,公司和数字基础设施的危害日益增长,因此对恶意URL的有效识别变得至关重要。本研究评估了多个机器学习算法,以预测和识别危险URL。研究的重点是随机森林分类器,因为它在二进制和多类分类任务中优于竞争对手模型。在二元分类中具有98.9%的精度,随机森林分类器的表现良好。这表明分类器可以识别安全和危险的URL。该系统的精度为98.8%,F1得分为99.3%,真实正率为99.7%,而真为95.6的真实负率证明了其可靠性。多类分类精度为97.0%,精度,召回和F1得分对于随机森林分类器再次很好。本研究提供了提高网络安全性的实用技巧,并显示了透明的AI模型和跨学科的团队工作如何解决复杂的网络安全问题。这项研究为已知信息的主体做出了重大贡献,其意义在于它提供了这两种好处。关键字:恶意软件,机器学习,URL,恶意。1。引言在当今快节奏的数字景观中,导致恶意网站的统一资源定位器(URL)的存在代表了一种实质而不断发展的网络安全威胁。网络犯罪分子在制作这些欺骗性的URL时表现出显着的创造力,巧妙地伪装它们,类似于可靠且值得信赖的来源。必须强大而严格令人遗憾的是,这些看似值得信赖的URL充当诱饵,诱使毫无戒心的用户进入危险的陷阱,并具有偷窃敏感的个人信息的邪恶意图(Alomari等,2023)。与这种恶意URL互动的影响可能是可怕的和深远的。一旦一个人无意间冒险进入这些险恶的地点,许多危害就会降临。个人和财务数据被当今数字时代被认为是神圣不可侵犯的,面临着掠夺的严重风险。此外,这些流氓URL可以充当传播阴险恶意软件的向量,不仅能够渗透单个计算机,而且可以渗透整个网络,从而使损害呈指数增大。打击这种威胁的最困扰的挑战之一是流氓网站的扩散和网络攻击的复杂性不断提高(Naim等,2023)。网络犯罪分子所采用的欺骗性艺术使普通用户越来越艰巨地区分安全和危险的网址,从而进一步加剧了危险。鉴于这种严峻的现实,维护在线安全和保障已经具有至关重要的意义。
8. 本页仅可填写两个字段,即“评论”和“交叉连接计划审查申请详情”部分,其他所有区域均禁止输入。请务必填写红色字母和星号 (联系电子邮件) (*) 指定的必填字段,然后单击下面的“完成”按钮。
在 COVID-19 疫情爆发之前,精神疾病已经给社会带来了沉重的负担。但现在,我们正在应对与 COVID-19 相关的压力以及 SARS-CoV-2 病毒对神经精神的直接影响,这种负担开始让人感到难以承受。我们欢迎治疗缓解,但可用的药物却如此之少。为什么在危机时期可用的药物如此之少?直到最近,神经精神药物的开发看起来并不乐观。许多制药公司已经放弃了开发针对重度抑郁症、阿尔茨海默病和精神分裂症等历史上难以解决的适应症的药物。然而,基因组学和成像等领域的进步,以及神经精神疾病病理生理学的突破性发现,引发了新一轮的创新。接下来,我们将介绍五家公司(有些规模大,有些规模小),它们正在为不仅有未满足需求,而且往往被社会忽视或边缘化的患者开发新型疗法。这些公司在第四届年度神经精神药物开发峰会上发表了一些最引人注目的演讲,该峰会是一场虚拟活动,于 2021 年 9 月 28 日至 30 日举行……