移动网络的第六代(6G)的开发非常重视可持续性,旨在通过连接未连接的数字鸿沟弥合数字鸿沟。它有望提供无处不在的智能,增强的安全性和弹性。建立在5G的进步上,如图1(a)所示,已经确定了6G的使用情况:增强的移动宽带(EMBB)将发展为身临其境的交流;大规模的机器型通信(MMTC)将过渡到大规模的通信;超级可靠和低延迟通信(URLLC)将提高到超级责任和低延迟通信(HRLLC);无处不在的连通性,人工智能(AI)和通信以及集成的传感和通信引入了6G [1-3]的三个新颖的应用领域。
5G 第五代移动网络 / 移动服务 5GC 5G 核心 AAU 有源天线单元 ASTRI 应用科技研究院 BBU 基带单元 CPE 客户端设备 EMBB 增强型移动宽带 EIRP 有效全向辐射功率 FDD 频分双工 HKSTP 香港科技园 ISAC 集成传感及通信 LOS 视距 MIMO 多输入多输出天线 mmWave 毫米波 NLOS 非视距 NSA 非独立 OFCA 通讯事务管理局 PDCP 分组数据汇聚协议 PHY 物理层 RBS 无线基站 RSRP 参考信号接收功率 RTT 往返时间 QAM 正交幅度调制 SA 独立 SINR 信号与干扰与噪声比 TDD 时分双工 UE 用户设备 URLLC 超可靠低延迟通信
与上一代无线网络架构升级一样,真正的独立 (SA) 5G 将需要新的核心网络以及新的无线接入网络 (RAN)。我们展示了最有可能立即实现的迁移路径,即 NSA 选项 3a,它允许移动运营商在利用现有 4G 核心网络的同时构建新的 5G RAN。这将在短期内为网络运营商节省成本,同时允许初步部署 5G 网络服务。最终,我们相信移动网络将发展为 SA 选项 1/2 架构,其中有两个截然不同的独立移动网络,相互叠加。要充分利用 5G 的 uRLLC 和 mMTC 技术,必须构建一个单独的核心网络。短期内,非独立 5G 仍将是全球 5G 部署的主要版本。
增强移动宽带 (eMBB):峰值数据速率将达到数十 Gbps。重要的是,eMBB 还具有三个不同的属性:1) 更高容量 - 可在人口密集的室内/室外区域使用;2) 增强连接性 - 可在任何地方使用;3) 更高用户移动性 - 可在从汽车到飞机的移动交通工具中使用。典型的物联网用例包括需要更高容量和更低延迟的视频和数据流设备,以及基于 AR/VR 的数字孪生的工业应用。 海量机器类型通信 (mMTC):它支持海量网络容量,可以可靠地连接数千个物联网端点和边缘设备,而不会出现拥塞问题。典型的端点是低成本、电池供电的设备,它们定期通过 mMTC 物联网网关将少量存储数据传输到核心或其他本地设备。 超可靠和低延迟通信 (URLLC):它为自动驾驶、工业自动化无线控制和机器人手术等关键任务应用提供低延迟和高可靠性。
摘要 提出了一种用于物联网 (IoT) 网络的数字孪生 (DT) 框架,其中无人机 (UAV) 充当飞行移动边缘计算 (MEC) 服务器,支持动态任务卸载。所考虑的 DT 模型非常适合工业自动化,并且严格限制关键任务服务的超可靠低延迟通信 (URLLC) 链路。为了支持低延迟物联网设备,我们制定了数字孪生辅助卸载 UAV-URLLC 的端到端 (e2e) 延迟最小化问题。具体而言,通过联合优化通信和计算参数(即功率、卸载因子以及物联网设备和 MEC-UAV 服务器的处理速率)来获得最小化的延迟。由于优化问题高度非凸,我们首先考虑 K 均值聚类算法来最佳地部署按需无人机。然后,有效地利用替代优化方法结合适当的内部近似来应对这一挑战。我们通过代表性数值结果证明了所提出的 DT 框架的有效性。
毫无疑问,世界目前正在经历一场全球大流行,这场大流行正在重塑我们的日常生活以及商业活动的开展方式。随着人们强调保持社交距离是遏制病毒迅速传播的有效手段,许多个人、机构和行业不得不依赖电信作为确保服务连续性的手段,以防止其业务完全停止。这给固定和移动网络都带来了巨大压力。尽管第五代移动网络 (5G) 在部署方面还处于起步阶段,但它拥有广泛的服务类别,包括增强型移动宽带 (eMBB)、超可靠低延迟通信 (URLLC) 和大规模机器类型通信 (mMTC),这些服务可以帮助应对与大流行相关的挑战。因此,在本文中,我们确定了由于 COVID-19 大流行导致流量需求激增而导致现有网络面临的挑战,并强调了人工智能赋能的 5G 在解决这些问题中的作用。此外,我们还简要介绍了如何使用人工智能驱动的5G网络预测未来的流行病爆发,以及在未来爆发流行病时如何建立具有抗流行病能力的社会。
5G技术的出现代表了移动通信的革命性步骤,其标志是无与伦比的数据传输速率,低延迟和对大量连接设备密度的支持。高级技术(例如网络切片),可以使网络资源的动态分配以满足各种服务要求,这是这种革命性转移的基础[1]。使用网络切片,可以在单个物理基础架构上建立几个针对某些用例定制的虚拟网络[2]。网络切片是5G的关键组成部分,可以很好地满足物联网的不断扩展的需求,包括无人驾驶汽车,智能城市和医疗保健等应用程序。网络切片将物理网络通过使用虚拟化技术作为软件定义的网络(SDN)和网络功能虚拟化(NFV)[3],将物理网络分为离散的虚拟切片。每个切片都可以自主功能,规定分配给其的资源和服务是为满足特定需求而定制的。旨在增强移动宽带(EMBB)的网络切片可能优先考虑视频流的高通量服务,而另一个支持超可靠的低延迟通信(URLLC)的切片可能会服务于任务至关重要的应用程序[4]。
摘要 - Location信息通常用作保证无线通信链接的性能的代理。但是,本地化错误可能会导致保证的不匹配,尤其是对操作超可靠的低延迟通信(URLLC)制度的用户有害。本文揭示了位置估计不确定性和无线链接可靠性之间的基本统计关系,特别是在超可靠通信的速率选择中。我们从一个简单的一维Nar-Rowband Rayleigh褪色场景开始,并朝着丰富的散射环境中的两维情况构建。无线链接可靠性的特征是元概率,超过停电能力的本地化误差的概率以及通过删除系统中其他错误源的概率,我们表明可靠性对本地化错误敏感。定义了ϵ -outage相干半径,并显示出对基于位置的速率选择问题的有价值的见解。但是,在不准确了解传播环境的情况下,确保可靠性通常是具有挑战性的。最后,提出了几种速率选择方案,展示了问题的动态,并揭示了适当考虑本地化错误对于确保在可靠性和可实现的吞吐量方面良好绩效至关重要。
5G 新无线电 (NR) 的首批规范已经达成一致,商用 5G 移动宽带服务预计将于 2019 年推出。然而,5G NR 将带来更多商业机会。本白皮书讨论了运营商和企业如何利用 5G 的超可靠低延迟通信 (URLLC) 功能来解决与工业自动化相关的各种高性能用例。这是通常被称为 Industry-X、工业 4.0 或工业互联网的更广泛机会的一部分。本文重点关注“未来工厂”概念,并使用机器人运动控制作为具有极端性能要求的应用示例。它展示了 5G 如何有助于提高生产流程的效率和灵活性,并强调了 5G 与现有和新兴工业网络标准集成的重要性,以使这一转变更快、更有效。基于有线以太网、WiFi 和 LTE 的局域网已用于工业应用,并为使用 5G 实现要求更高、变革性更强的自动化提供了起点。私有、专用网络使企业能够将网络配置为所需的性能。由于它不依赖于与公共网络的互通,并且工厂所有者可以完全控制部署环境,因此可以设计和优化工业网络以实现实时性能,从而实现极高的可靠性
摘要 - 机器人互联网(IOR)在挑战性的环境中具有复杂任务的优势,但它却带来了与服务和场景多样性,降低风险和超低延迟要求相关的挑战。为了应对这些挑战,我们提出了一种综合体系结构,可增强IOR的适应性,灵活性,鲁棒性和低潜伏期。这是通过引入网络切片,基于服务的体系结构和数字双(DT)来实现的。我们已经开发了一个开源实验平台,以展示所提出的体系结构的可定制性。在WiFi和蜂窝场景中设置了不同要求的切片,以证明其多功能性。此外,我们为IOR提出了一种DT辅助深度加固学习(DRL)方法,以改善DRL性能并减轻与不良行动相关的风险。DT用于预测物理环境中的奖励和动态状态过渡。更重要的是,我们介绍了一种资源分配方法,该方法结合了数据处理队列抢占和频谱的穿刺。这旨在适应共存的服务,特定增强的移动宽带(EMBB)和爆发的超可靠的低潜伏期通信(URLLC)。实验和数值结果验证了我们提出的方法的有效性,显示了IOR中的可定制性,鲁棒性,延迟和中断概率的提高。