Yassir Lekbach 1+,Toshiyuki Ueki 1+,小米刘2,Trevor Woodard 1,Jun Yao 2,3,4和Derek R. 4
类风湿关节炎 (RA) 是一种以慢性关节炎为特征的炎症性自身免疫性疾病,常伴有关节外影响,如间质性肺病 (ILD)。RA 相关 ILD (RA-ILD) 是一种严重的并发症,可影响预后 ( 1 , 2 )。尽管生物制剂抗风湿药 (bDMARDs) 和 Janus 激酶抑制剂 (JAKi) 的出现扩大了 RA 的治疗选择,但 RA-ILD 的最佳治疗方法仍未确定 ( 3 , 4 )。值得注意的是,一些研究强调,在患有 ILD 的 RA 患者中使用抗风湿药物时,需要注意呼吸道感染和药物性肺损伤的风险 ( 5 , 6 )。目前,阿巴西普(一种细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA4) 胞外结构域与人 IgG1 Fc 区融合蛋白)被认为是治疗伴有 ILD 的 RA 患者最合理的选择 ( 7 );然而,最近的报告表明,JAKi 对 RA-ILD 疾病行为的影响方面的有效性和安全性可能与阿巴西普相当 ( 8 , 9 )。与 RA-ILD 进展或急性加重有关的因素包括寻常型间质性肺炎 (UIP) 模式、用力肺活量下降、吸烟和抗环瓜氨酸蛋白抗体 (ACPA) 高滴度 ( 10 , 11 )。此外,与新发 RA-ILD 相关的危险因素包括高龄、男性、吸烟、类风湿因子和 ACPA 高滴度以及关节炎活动性控制不佳 (12-14)。上皮-间质转化 (EMT) 是一个关键的生理过程,在此过程中上皮细胞失去极性并转变为间质表型。上皮细胞标志物 E-钙粘蛋白的下调和间质标志物 N-钙粘蛋白的上调(也称为钙粘蛋白转换)是 EMT 的特征 (15,16)。尽管 EMT 具有重要的生理意义,但它也与各种病理状态有关,尤其是在细胞损伤和慢性炎症后 (17)。事实上,EMT 被认为是 RA-ILD 发病机制中的关键过程之一,类似于导致特发性肺纤维化的事件(18)。人类肺泡 II 型细胞的体外研究表明,转化生长因子-b 和白细胞介素 (IL)-6 等因子治疗可诱导 EMT,据报道,阻断 JAK/STAT 信号通路可抑制 EMT(19)。然而,治疗 RA 的主要药物甲氨蝶呤 (MTX)(20)对 EMT 的影响仍未得到充分探索。本研究的目的是比较用 JAKi 或 bDMARDs 治疗的 RA-ILD 患者胸部计算机断层扫描 (CT) 图像的时间变化,并确定与影像学上 RA-ILD 恶化相关的因素。此外,我们通过体外研究 JAKi 和 MTX 治疗对 RA-ILD 患者纤维化状态的可能作用机制,研究了它们对 IL-6 诱导的肺泡上皮细胞 EMT 的影响。我们的研究结果揭示了 JAKi 和 MTX 治疗抑制 RA-ILD 进展的潜力。
教授 副教授 助理教授 电子邮件地址 电子邮件地址 电子邮件地址 Yang Ju Yuhki Toku Yasuhiro Kimura jumech.nagoya-u.ac.jp 我的mech.nagoya-u.ac.jp 木村康弘mae.nagoya-u.ac.jp 沙本英二 铃木则一 早坂武宏 eiji.shamotomae.nagoya-u.ac.jp nsuzukimech.nagoya-u.ac.jp takehiro.hayasakamae.nagoya-u.ac.jp Noritsugu Umehara Takayuki Tokoroyama Motoyuki Murashima umemech.nagoya-u.ac.jp takayuki.tokoroyamamae.nagoya-u.ac.jp motoyuki.murashimamae.nagoya-u.ac.jp 奥村大 松原诚四郎 大.奥村大mae.nagoya-u.ac.jp seishiro.matsubaramae.nagoya-u.ac.jp 成瀬一郎、吉家亮、植木康昭
广泛的研究表明,医疗工人(HCW)的服装经常被微生物和病原体污染,对感染带来了重大风险(Mitchell等,2015)。类似的设备也利用Arduino微控制器来管理紫外线和消毒过程(Albayyat等,2024)。UV-C辐射在200至270 nm的波长范围内运行,有效地破坏了DNA分子键,使微生物无活性(Buonanno等,2020)。此外,HEPA过滤器在去除空降病原体方面表现出显着的疗效,达到了99.97%以上的病毒捕获率(Ueki等,2022)。医疗服装(AUVISMA)自动紫外线辐照系统通过有效消除医疗制服,从而整合UV-C辐射和HEPA过滤,以增强医疗保健中的卫生标准,从而保护医疗保健工作者和患者。
直到最近,在接受经皮冠状动脉介入治疗 (PCI) 的随机试验中,高出血风险 (HBR) 患者的代表性仍然不足。然而,最近这个重要的患者群体引起了广泛关注,有许多已经完成和正在进行的随机试验(NCT03023020;NCT03287167)专门针对 HBR 患者 1-4 。虽然这是一个可喜的进展,但此类试验的纳入标准却有很大差异。这些差异反映在已发表试验中大出血率的显著差异 1-5 。在此背景下,高出血风险学术研究联盟 (ARC-HBR) 最近提出了标准化 HBR 定义的标准,以用于临床试验招募。根据共识,HBR 被任意定义为一年内出血率≥4% 或颅内出血率≥1%。根据这些临界值,确定了许多出血风险因素并分类为主要或次要标准。建议存在≥1 个主要标准或≥2 个次要标准以授予 HBR 状态 6 。在最新一期的 EuroIntervention 杂志中,Ueki 等人报告了对所提标准的验证以及与
1。acs。www.cancer.org。2。Jaehne J和Al。 J Oncool Cinder。 1992; 118-479。 3。 nakashima h和al。 int j癌。 1995; 64:239-2 4。 树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1Jaehne J和Al。J Oncool Cinder。 1992; 118-479。 3。 nakashima h和al。 int j癌。 1995; 64:239-2 4。 树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1J Oncool Cinder。1992; 118-479。 3。 nakashima h和al。 int j癌。 1995; 64:239-2 4。 树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-11992; 118-479。3。nakashima h和al。int j癌。1995; 64:239-24。树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1树T和Al。J Pathol。1995; 177:353-35。tian x和al。常见的生物物理学。2001; 286:505-56。matsunobu t和al。他们曾经J。2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-12006; 28:314。7。wu c和al。操作历史记录。2006; 108:19-28。sahin u和al。Clins Ress。2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-12008; 14:7624-7634。9。d和al。科学。2017; 357:409-410。Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1Yang b和al。J扩展职责。2019:38:211。Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1Samstein RM和Al。nat Genet2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-12019:51:202-206。12。ahn s和al。Pathol模式。2016; 29:1095-1
5 Albers,S. -V。 &Jarrell,K。F.古细菌:古细菌如何游泳。 微生物学中的边界6,doi:10.3389/fmicb.2015.00023(2015)。 6 Albers,S. -V。 &Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。 微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。 7 Van Wolferen,M.,Orell,A。 &Albers,S. -V。 古细菌生物膜形成。 自然评论微生物学16,699-713(2018)。 8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。 微生物学的前沿6,190(2015)。 9 Walker,D。等。 hungatei的甲螺旋藻的古细胞是导电性的。 。 MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。5 Albers,S. -V。&Jarrell,K。F.古细菌:古细菌如何游泳。微生物学中的边界6,doi:10.3389/fmicb.2015.00023(2015)。6 Albers,S. -V。 &Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。 微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。 7 Van Wolferen,M.,Orell,A。 &Albers,S. -V。 古细菌生物膜形成。 自然评论微生物学16,699-713(2018)。 8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。 微生物学的前沿6,190(2015)。 9 Walker,D。等。 hungatei的甲螺旋藻的古细胞是导电性的。 。 MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。6 Albers,S. -V。&Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。7 Van Wolferen,M.,Orell,A。&Albers,S. -V。古细菌生物膜形成。自然评论微生物学16,699-713(2018)。8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。微生物学的前沿6,190(2015)。9 Walker,D。等。hungatei的甲螺旋藻的古细胞是导电性的。。MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。MBIO 10,E00579-00519(2019)。10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。MBIO 12,E02344-02321(2021)。11 Quemin,E。R.等。首先深入了解过度授予性古细菌病毒的进入过程。J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。12 Baquero,D。P.等。病毒研究的进展。108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。13 Briegel,A。等。跨古细菌和细菌的趋化机制的结构保护。环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。14 Quax,T。E. F.,Albers,S. -V。 &Pfeiffer,古细菌的出租车。 生命科学的新兴主题2,535-546,doi:10.1042/etls20180089(2018)。 15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。 &Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。 分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。 16 Meyerdierks,A。等。 元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。 环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。 17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。14 Quax,T。E. F.,Albers,S. -V。&Pfeiffer,古细菌的出租车。生命科学的新兴主题2,535-546,doi:10.1042/etls20180089(2018)。15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。 &Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。 分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。 16 Meyerdierks,A。等。 元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。 环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。 17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。&Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。16 Meyerdierks,A。等。元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。17 Chadwick,G。L.等。比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。&Mansoorabadi,S。O。甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。Science 354,339-342,doi:10.1126/science.aag2947(2016)。19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。19 Michael,A。J.多胺在古细菌和细菌中的功能。生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。20 Morimoto,N。等。在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。核酸研究28,27-30,doi:10.1093/nar/28.1.27(2000)。22 Mihara,H。&Esaki,N。细菌半胱氨酸脱硫酶:它们的功能和机制。应用微生物学和生物技术60,12-23,doi:10.1007/s00253-002-1107-4(2002)。23 Tchong,S.-I.,Xu,H。&White,R。H. L-半胱氨酸脱硫酶:一种从Jannaschii中分离出的[4FE -4S]酶,催化了L-半结合体为吡酸丙酮酸,氨氨基和硫化物的溶解。生物化学44,1659-1670,doi:10.1021/bi0484769(2005)。