摘要:在我们问什么是量子引力理论之前,我们有一个合理的追求,即在弯曲时空中制定一个稳健的量子场论 (QFTCS)。几十年来,一些概念问题,尤其是幺正性损失(纯态演变为混合态),引起了人们的关注。在本文中,我们承认时间是量子理论中的一个参数,这与它在广义相对论 (GR) 背景下的地位不同,我们从“量子优先方法”入手,提出了一种基于离散时空变换的 QFTCS 新公式,这提供了一种实现幺正性的方法。我们基于离散时空变换和几何超选择规则,用直接和 Fock 空间结构重写了 Minkowski 时空中的 QFTCS。将此框架应用于德西特 (dS) 时空中的 QFTCS,我们阐明了这种量化方法如何符合幺正性和观察者互补原理。然后,我们评论了对德西特时空中状态散射的理解。此外,我们简要讨论了 QFTCS 方法对未来量子引力研究的影响。
摘要-本研究探讨了泡利幺正算子的数学性质和特征及其在量子信息论中的应用。泡利算子是量子力学中的基本对象,在描述和操纵量子态方面起着至关重要的作用。通过全面的分析,我们研究了泡利算子的幺正性、厄米性、特征值性质和代数结构。我们探索了它们在布洛赫球面上的几何解释,并讨论了泡利分解定理等高级性质及其在稳定器形式中的作用。该研究表明了泡利算子在量子信息各个方面的广泛影响,包括量子门、测量、纠错码和算法。我们的研究结果强调了泡利算子在量子电路设计、纠错方案和量子技术发展中的不可或缺性。我们还确定了需要进一步研究的领域,例如泡利算子在高维系统中的行为及其在特定噪声模型的量子误差校正中的最佳用途。这项研究有助于更深入地了解这些基本的量子信息工具及其在量子计算和通信中的广泛应用。索引术语 - 数学性质、泡利幺正算子、量子信息论
1614 客运路线 135, 161, 174, 178, 191-217, 312-328, 336-346, 371, 389-409, 400-412, 422-458, 486, 494, 506, 635-641, 655, 666-672, 669-673, 692, 825, 863, 905, 913-917, 921, 926-946A, 929-931, 935-941, 968-972, 1037-1043, 1047, 1055, 1057A, 1059, 1067、1079-1079A、1087-1099、1196-1198、1202、1208、1212-1216、1230、1244、1288、1292-1300、1302-1304、1308-1308A、1312、1318-1326 和 1330-1340 Dominion Road、33A-35 Brentwood Avenue、386-388 Mount Albert Road、2 Onslow Road、1A Invermay Avenue、14 Quest Terrace 和 41 Denbigh Avenue
由于与量子编程相关的量子知识不直观,量子程序的编码和验证非常困难。因此,迫切需要自动化工具来减轻与低级量子细节相关的繁琐和错误。在本文中,我们发起了量子酉程序的程序合成研究,该程序以递归方式定义一系列用于不同输入大小的酉电路,这些电路在现有的量子编程语言中被广泛使用。具体来说,我们介绍了第一个量子程序合成框架 QSynth,其中包括一种新的归纳量子编程语言、其规范、合理的推理逻辑以及将推理过程编码为 SMT 实例。 QSynth 利用现有的 SMT 求解器,成功合成了 10 个量子幺正程序,包括量子算术程序、量子特征值反演、量子隐形传态和量子傅里叶变换,这些程序可以轻松地转换为主要量子平台上的可执行程序,例如 Q#、IBM Qiskit 和 AWS Braket。
S. Sang 和 TH Hsieh,Phys.牧师研究 3, 023200 (2021)。 A. Lavasani、Y. Alavirad 和 M. Barkeshli,Nat.物理。 17, 342–347 (2021)。
摘要:本文对量子电路酉矩阵的自动生成进行了研究。我们认为量子电路分为六种类型,并给出了每一种类型的酉算子表达式。在此基础上,提出了一种计算电路酉矩阵的详细算法。然后,对于由量子逻辑门组成的量子逻辑电路,引入一种利用真值表计算量子电路酉矩阵的快速方法作为补充。最后,我们将所提算法应用于基于NCT库(包括非门、受控非门、Toffoli门)和广义Toffoli(GT)库的不同可逆基准电路并给出实验结果。关键词:量子电路,酉矩阵,量子逻辑门,可逆电路,真值表。
对于直接实现酉门的传统量子计算机来说,模拟描述非酉演化后量子系统真实相互作用的一般量子过程是一项挑战。我们分析了有前途的方法的复杂性,例如 Sz.-Nagy 膨胀和酉函数的线性组合,它们可以通过非酉算子的概率实现来模拟开放系统,这需要多次调用编码和状态准备预言机。我们提出了一种量子二酉分解 (TUD) 算法,使用量子奇异值变换算法将具有非零奇异值的 a 维算子 A 分解为 A = ( U 1 + U 2 ) / 2,避免了经典的昂贵的奇异值分解 (SVD),其时间开销为 O(d3)。这两个酉函数可以确定性地实现,因此每个酉函数只需要调用一次状态准备预言机。对编码预言机的调用也可以显著减少,但测量误差可以接受。由于TUD方法可以将非幺正算子实现为仅两个幺正算子,因此它在线性代数和量子机器学习中也有潜在的应用。
我们研究了统一的财产测试,其中量子算法可以查询对黑盒统一的查询访问,并且必须决定是否满足某些财产。除了包含标准量子查询复杂性模型(单位编码二进制字符串)作为特殊情况外,此模型还包含没有经典类似物的“固有的量子”问题。表征这些问题的查询复杂性需要新的算法技术和下限方法。我们的主要贡献是用于统一财产测试问题的广义多项式方法。通过利用与不变理论的连接,我们将此方法应用于诸如确定单位的复发时间,近似标记子空间的尺寸以及近似标记状态的纠缠熵等问题。我们还提出了一种基于统一的属性测试方法,用于QMA和QMA之间的甲骨文分离(2),这是量子复杂性理论中长期存在的问题。
随着量子信息论领域的发展,拉丁方在经典编码理论中得到应用,考虑拉丁方的量子类似物也是很自然的。量子拉丁方的概念由 B. Musto 和 J. Vicary 于 2015 年提出[12]。此后,这些对象被证明与绝对最大纠缠 (AME) 态有关系,[14] 后者在量子信息中有各种应用。[9] [16] 我们将详细讨论 Rather 等人最近取得的成果 [15],关于大小为 6 × 6 的量子正交拉丁方的存在,这个对象不存在经典等价物。[18] 一个重要的悬而未决的问题是,是否存在任何阶的量子正交拉丁方,它们在某种意义上不等同于已知的经典拉丁方。[21] 然后,我们将通过考虑计算和代数技术,开始研究大小为 3 × 3 的量子正交拉丁方的这个问题。
实现基于统一的量子量子设备上的非单身转换对于模拟各种物理问题至关重要,包括开放量子系统和亚范围量子量子状态。我们提出了一种基于扩张的算法,用于使用仅使用一个Ancilla量子的概率量子计算模拟非自动操作。我们利用奇异值分解(SVD)将任何通用量子运算符分解为两个单一操作员和对角线非单身操作员的产物,我们证明可以通过对角度扩张的空间中的对角线统一操作员来实施,这可以实现。扩张技术增加了计算中的Qubit数量,因此,我们的算法将扩张空间中所需的操作限制为对角统一操作员,该操作员已知电路分解。我们使用此算法在具有高忠诚度的量子设备上准备随机的亚标准化两级状态。此外,我们介绍了在dephasing通道中的两级开放量子系统的准确非单身动力学和在量子设备上计算的振幅阻尼通道的准确非单身动力学。提出的算法对于可以轻松计算SVD时实施一般的非独立操作是最有用的,在嘈杂的中间规模量子计算时代,大多数运营商就是这种情况。