计划委员会:英特尔公司(美国)的Frank E. Abboud; UWE F.W.Behringer,UBC微电子学(德国); Ingo Bork,西门子Eda(美国); Brian Cha,Entegris,Inc。(韩国,共和国); Sandeep Chalamalasetty,Micron Technology,Inc。(美国);三星电子公司Jin Choi(韩国,共和国); Aki Fujimura,D2S,Inc。(美国); Emily E. Gallagher,IMEC(比利时); lasertec USA Inc. Arosha W. Goonesekera(美国); Naoya Hayashi,Dai Nippon Printing Co.,Ltd。(日本); Henry H. Kamberian,Photronics,Inc。(美国); Bryan S. Kasprowicz,美国Hoya Corp.(美国); Eung Gook Kim,E-Sol,Inc。(韩国,共和国); Romain Lallement,IBM Thomas J. Watson Research Ctr。(美国);英特尔公司(美国)Ted Liang; Nihar Mohanty,Meta(美国);肯特·H·纳川(Kent H. Dong-Seok Nam,ASML(美国);高海·奥努(Takahiro Onoue),霍亚公司(Japan)(日本); Danping Peng,TSMC北美(美国); Jed H. Rankin,IBM Corp.(美国);道格拉斯·J·雷斯尼克(Douglas J. Resnick),佳能纳米技术公司(美国); Carl Zeiss Sms Ltd.(以色列)的Thomas Franz Karl Scheruebl; Ray Shi,KLA Corp.(美国); Jaesik Son,SK Hynix System Ic Inc.(韩国,共和国);西门子Eda(美国)的Yuyang Sun; lasertec U.S.A.,Inc。Zweigniederlassung Deutschland(德国)Anna Tchikoulaeva(德国);克莱尔·范·拉尔(Claire Van Lare),荷兰ASML B.V.(荷兰); Yongan Xu,Applied Materials,Inc。(美国); Yamamoto Kei,Fujifilm Corp.(日本); Seung-Hune Yang,三星电子有限公司(韩国,共和国); Nuflare Technology,Inc。(日本)舒斯助Yoshitake; Bo Zhao,Meta(美国); Larry S. Zurbrick,Keysight Technologies,Inc。(美国)
2024年3月6日,苏尔泽(Sulzer)在新加坡开设了新的尖端创新技术中心,以支持亚太地区亚太地区可持续制造的采用,昨天庆祝了其在新加坡荣获创新区的新创新技术中心(INTECH)的正式开业。新的700平方米新加坡的Intech包括最先进的化学工程研发测试中心,实验室和小规模生产工厂。Sulzer的新加坡Intech将测试并提供清洁工艺技术,以实现该地区的可持续制造。新的新加坡Intech位于Jurong Innovation District的JTC Cleantech三。为了纪念其发射,Sulzer于2024年3月5日举行了剪彩仪式,并为大约160位杰出客人和员工提供了剪彩仪式,并为该设施提供了指导之旅。参加贵宾包括瑞士驻新加坡大使和文莱·达鲁萨兰(Brunei Darussalam),弗兰克·格吕特(FrankGrütter)先生;新加坡经济发展委员会全球企业部高级副总裁兼全球企业部主管Elaine Teo女士; JTC Corporation行业集群集团Leow Thiam Seng先生的团体主管。Sulzer执行主席Suzanne Thoma说:“我们很高兴与新的新加坡Intech扩大我们的高级研发,制造和服务设施的全球网络。 我们期待欢迎客户进入我们的新Intech,在那里我们将推动为亚太地区客户应用的创新解决方案开发。”格鲁特大使评论说:“苏尔策的英特甲是一家伟大的瑞士公司,将创新和工程卓越的公司带到新加坡。Sulzer执行主席Suzanne Thoma说:“我们很高兴与新的新加坡Intech扩大我们的高级研发,制造和服务设施的全球网络。我们期待欢迎客户进入我们的新Intech,在那里我们将推动为亚太地区客户应用的创新解决方案开发。”格鲁特大使评论说:“苏尔策的英特甲是一家伟大的瑞士公司,将创新和工程卓越的公司带到新加坡。这项投资加强了我们对新加坡和更广泛的Apac地区的承诺,我们的过程技术和解决方案将越来越多地为客户和该地区带来繁荣和可持续性。” Sulzer Chemtech部门主席Uwe Boltersdorf补充说:“从碳捕获到电池和塑料回收或生物基化学品的生产,我们的分离过程使得能够过渡到更加生态意识的圆形操作。我期待看到Sulzer在新加坡和该地区蓬勃发展,加入了400多家瑞士公司,这些瑞士公司将新加坡称为房屋,并为新加坡人提供25,000多个工作岗位。” JTC Corporation的Leow先生评论说:“ Sulzer在Cleantech的Intech设施开设了三个标志着我们努力促进新加坡和该地区可持续制造的努力。我们期待与Sulzer团队进行更紧密的合作,以与行业联系,以提高可持续性和创新。” JTC Cleantech Trient位于Jurong Innovation District的心脏地带,这是一家高级制造中心,新加坡的首个由JTC计划的生态公园大师600公顷的区域拥有一个全价值的4.0行业活动链,从原型制作和测试层到生产和分销。作为清洁技术项目,城市和高级制造解决方案的全球枢纽,JTC Cleantech Three的设计创造了一个新的,可持续和综合的工作环境,对于支持庄园的研究和企业至关重要。
完成对德国公司 FMB Feinwerk- und Meßtechnik GmbH 100% 股权的收购 SAES Getters SpA . (SAES)今天宣布完成对 FMB Feinwerk- und Meßtechnik GmbH(FMB Berlin)100% 股权的收购,该公司至今仍由大股东 Uwe Schneck、小股东 Ingmar Lehmann 和 Jens Rekow 以及 Mardi Beteiligungs GmbH & Co. 公司全资拥有。之前由 FMB Berlin 拥有的英国子公司 FMB Oxford Limited(FMB Oxford)不在收购范围内,因为其业务对 SAES 来说不具有战略意义。FMB Berlin 总部位于柏林,自 1990 年以来一直活跃于同步加速器和粒子加速器组件和科学仪器领域,是综合性的国际参与者。此次收购旨在巩固 SAES 集团在先进科研市场的国际地位和领导地位,扩大欧洲和全球粒子加速器和同步加速器中使用的真空系统的供应。收购价格为 800 万欧元,由 SAES 使用自有资源以现金支付。如果交割日的债务金额超过预定义的阈值,则该价格可能会进行调整。FMB 的现金金额在交割日接近于零。FMB Berlin 在 2023 年实现的收入约为 1340 万欧元,EBITDA 利润率为 13%。截至 2023 年 12 月 31 日,该公司的净资产为 480 万欧元。该公司目前拥有约 60 名员工。SAES 集团 SAES Getters SpA 公司是吸气剂技术开发的先驱,连同其子公司在需要高真空条件的各种科学和工业应用领域处于世界领先地位。在 80 多年的经营中,集团的吸气剂解决方案一直支持信息显示和灯具行业、复杂的高真空系统和真空隔热领域的技术创新,支持从大型真空功率管到微型设备(如硅基微电子和微机械系统 (MEMS))等技术的创新。自 2004 年以来,SAES 集团利用其在特殊冶金和材料科学方面的核心竞争力,将业务扩展到先进材料市场,特别是形状记忆合金市场,这种材料具有超弹性,并且在热处理时具有预定义形状的特性。这些特殊合金目前主要应用于生物医学领域,也非常适合实现工业领域(家庭自动化、白色家电行业、消费电子产品、医疗保健、汽车和奢侈品行业)的执行器设备。最近,SAES 通过开发将吸气材料集成到聚合物基质中的技术平台扩大了业务范围。这些产品最初是为 OLED 显示器开发的,目前用于新的应用领域,其中最重要的是光电子、先进光子学、电信(5G)和移动电话。SAES 还为消费电子市场提供功能性声学复合材料,并且正在验证从两个主要技术平台开发的新型功能材料:特殊沸石和微胶囊。这些新开发成果可以应用于从化妆品到油漆和涂料领域以及天然聚合物的各个领域。在最新的应用中,先进包装具有重要的战略意义,SAES 正在为食品可持续包装提供一系列新产品,并与可回收和可堆肥的解决方案展开竞争。
议程和演示文稿可在此处获取。 [1] 介绍会议——背景介绍 CERT 副主席兼日本能源经济研究所董事会成员 Toshiyuki Sakamoto 和经济产业省自然资源能源局国际事务部主任 Hidechika Koizumi 致欢迎辞。EGRD 副主席兼应用能源研究所研究主任 Atsushi Kurosawa 对主办方的参与表示欢迎,丹麦技术大学 EGRD 主席 Birte Holst Jørgensen 概述了 EGRD 活动。IEA 氢能和替代燃料部门负责人 Uwe Remme 介绍了 IEA《2021 年全球氢能评估》的主要发现。预计 2020 年氢气需求量为 9000 万吨,工业和炼油行业会消耗这些氢气。在零排放承诺下,2030 年氢气需求量可能达到 1.2 亿吨。新的低碳制氢项目正在进行中,到 2030 年,约有 1700 万吨氢气可能来自化石燃料,采用 CCS 和可再生电解技术。欧盟委员会清洁氢能任务主任 Matthijs Soede 介绍了 2021 年 6 月启动的创新任务 (MI) 清洁氢能任务的现状。欧盟已开始从生产到最终使用创建 MI 氢谷,其三大支柱是研究和创新、氢谷示范和创造有利环境。COP26 之后,清洁氢能将讨论潜在的行动计划、实施方案和进展审查。[2] 氢能政策会议日本经济产业省自然资源能源局先进能源系统和结构部氢能和燃料电池战略办公室副主任 Hiroki Yoshida 介绍了日本最新的能源政策和面向氢能经济的行动。日本政府已设定了氢气成本降低目标,到 2030 年降低至 3 美元/千克,到 2050 年降低至 2 美元/千克以下,目标是到 2030 年氢气市场容量达到 300 万吨,到 2050 年达到 2000 万吨。为实现这一目标,政府将重点关注整个氢气系统的政策,包括需求方、生产和运输基础设施。在第六个战略能源计划中,氢/氨在 2030 年发电结构中的份额为 1%。由于日本国内能源资源有限,该计划将从海外大量进口氢气。日本还在促进有关氢技术和燃料的国际对话方面发挥着主导作用。自 2018 年以来,各国政府每年都在日本主办氢能部长会议。在 2021 年 10 月举行的最近一次会议上,30 多个政府分享了扩大氢气生产和使用的政策方向。 Luca Pollizi , 氢能研究与创新政策官员,欧盟委员会概述了欧盟的氢能政策。欧盟委员会从联盟层面、国家和地区以及国际三个维度支持向氢能经济转型。氢能战略提出了欧洲的生产目标,到2024年氢气产量达到100万吨,到2030年氢气产量达到1000万吨。联合承诺中的公私合作伙伴关系支持欧洲和国外的氢能项目,而催化剂基金等混合融资机制则支持欧盟成员国之间的活动。许多欧盟成员国将公布和分发计划,以加强整个欧洲对长期目标的承诺,在区域层面,超过19个地区将采用氢能技术。美国能源部能源效率和可再生能源办公室氢能与燃料电池技术办公室高级顾问Eric Miller总结了美国氢能政策的现状。在美国,联邦目标包括到 2050 年实现净零排放,到 2035 年实现 100% 无碳污染的电力部门。氢能将使各行业脱碳,特别是在重型运输和工业等难以减排的行业。墨西哥湾地区的氢气生产设施通过天然气重整为炼油厂生产氢气。超过 1600 英里的氢气管道主要位于墨西哥湾地区,而世界上最大的储氢洞穴位于美国。氢能地球计划于 2021 年 6 月启动,其标语“111”雄心勃勃的目标是在 10 年内实现每 1 千克清洁氢气 1 美元的成本。氢能计划中的先进途径包括通过太阳能直接分解水、热化学和生物发酵。自然资源和最终用途的区域机会多种多样。从生产到最终用途的运输是利用美国氢气成本的关键。美国能源部的美国氢能计划将涵盖可再生能源、化石能源和碳管理以及核能。美国在氢能相关的国际活动方面非常活跃。美国能源部能源效率与可再生能源办公室总结了美国氢能政策的现状。在美国,联邦目标包括到 2050 年实现净零排放,到 2035 年实现 100% 无碳污染电力部门。氢能将使各行业脱碳,尤其是重型运输和工业等难以减排的行业。墨西哥湾地区的氢气生产设施通过天然气重整为炼油厂生产氢气。超过 1600 英里的氢气管道主要位于墨西哥湾地区,而世界上最大的储氢洞穴位于美国。氢能地球计划于 2021 年 6 月启动,其标语“111”雄心勃勃的目标是在 10 年内实现每 1 公斤清洁氢气 1 美元。氢能计划中的先进途径包括太阳能直接分解水、热化学和生物发酵。自然资源和最终用途的区域机会多种多样。从生产到最终使用的运输是美国降低氢气成本的关键。美国能源部的美国氢能计划将涵盖可再生能源、化石能源和碳管理以及核能。美国在与氢能相关的国际活动中非常活跃。美国能源部能源效率与可再生能源办公室总结了美国氢能政策的现状。在美国,联邦目标包括到 2050 年实现净零排放,到 2035 年实现 100% 无碳污染电力部门。氢能将使各行业脱碳,尤其是重型运输和工业等难以减排的行业。墨西哥湾地区的氢气生产设施通过天然气重整为炼油厂生产氢气。超过 1600 英里的氢气管道主要位于墨西哥湾地区,而世界上最大的储氢洞穴位于美国。氢能地球计划于 2021 年 6 月启动,其标语“111”雄心勃勃的目标是在 10 年内实现每 1 公斤清洁氢气 1 美元。氢能计划中的先进途径包括太阳能直接分解水、热化学和生物发酵。自然资源和最终用途的区域机会多种多样。从生产到最终使用的运输是美国降低氢气成本的关键。美国能源部的美国氢能计划将涵盖可再生能源、化石能源和碳管理以及核能。美国在与氢能相关的国际活动中非常活跃。
测量机械量,汉诺威 (U),Dir. 和 R. Schwartz 教授 (1) 静态学,Ostfalia 应用科学大学,Wolfenbüttel (FH),工程博士。 D. Röske (1.2) 材料强度,奥斯特法利亚应用科学大学,沃尔芬比特尔 (FH),工程博士。 D. Röske (1.2) 信息与编码理论,奥斯特法利亚应用科学大学,沃尔芬比特尔 (FH),教授、博士。 F. Jäger (1.3) 电气工程基础,不伦瑞克 Teutloff 学校 (S),A. Eggestein (1.5) 结构噪声,斯图加特 (FH),教授、博士工程师。 W. Scholl (1.7) 布伦瑞克 Kontinna 的波传播 (U),Dr. M. Schmelzer (1.7) 声学基础,布伦瑞克 (U),博士。 M. Schmelzer (1.7) 建筑声学实践,布伦瑞克 (U),教授、博士工程师。 W. Scholl (1.7) 计量学基础 - 仪器,布伦瑞克工业大学 (U),PD 博士U. Siegner (2) 高频和移动无线电测量技术,布伦瑞克工业大学,电气工程、信息技术、物理学院 (U),博士。 T. Kleine-Ostmann (2.21) 纳米技术,汉诺威莱布尼茨大学 (U),PD 博士H. W. Schumacher (2.53) 纳米技术,汉诺威莱布尼茨大学 (U),PD 博士F. Hohls (2.53) 现代存储技术,布伦瑞克工业大学 (U),博士。 MF Beug (2.63) 测量数据评估和测量不确定度,TU Ilmenau (U),教授、博士工程师。 K.-D。 Sommer (3) 测量数据评估和测量不确定度,布伦瑞克工业大学 (U),教授、博士工程师。 K.-D。 Sommer (3) 测量数据评估和测量不确定度,TU Erlangen-Nuremberg (U),
Anne-Kathrin Baczko 1.2,⋆,Matthias Kadler 3,Eduardo Ros 2,Christian M.来自3,4,2,Maciek Wielgus 2,Manel Perucho 5.6,Thomas P. Kichbaum 2,Mislav Balokovi´c 7 13.2,Luca Ricci 3.2,Kazunori Akiyama 14,15.8,Ezequiel Albentosa-Ruíz5,Antxon Alberdi 16,Walter Alef 2,Juan Carlos Algaba 17,Juan Carlos Algaba 17,Richard Anantua 18,142,8.9 Bidisha Bandyopadhyay 20,John Barrett 14,MichiBauböck21,Bradford A. Benson 22.23,Dan Bintley 24.25,Raymond Blundell 9,Katherine L.Bouman 26,Geo Qo Qo Qo i Q. Re i Q. Rey C. Bower C. Bower 27.28 Britzen 2,Avery E. Broderick 32,33.34,Dominique Broguiere 31,Thomas Bronzwaer 13,Sandra Bustamante 35,Do-Youung Byun 36.37,John E. Carlstrom 38.23,39.40 Chatterjee 43,Ming-Tang Chen 27,Yongjun Chen 44.45,Xiaopeng Cheng 36,Ilje Cho 16,36.46,Pierre Christian 47,Nicholas S. Conroy 48.9,John E. Conway 41,John E. Conway 41,James M.Cordes 43,Thomas M.Crawford 23.38,Geo b.