摘要:量子增强学习(QRL)作为加固学习的分支(RL)出现,该分支在算法的体系结构中使用Quantumsodules。QRL的一个分支集中在函数近似值作为函数近似器中,以变异量子电路(VQC)的替换为替换神经网络(NN)。初始作品在具有离散作用空间的经典环境上显示出令人鼓舞的结果,但是VQC的许多拟议的架构设计选择缺乏详细的研究。因此,在这项工作中,我们研究了VQC设计选择的影响,例如角度嵌入,编码块体系结构以及后处理对QRL代理的训练能力的影响。我们表明,VQC设计极大地影响了训练性能,并为分析的组件提供了增强功能。此外,我们还展示了如何设计QRL代理,以便通过连续的动作空间求解经典环境,并基于我们的代理对经典的前馈NNS进行基准测试。
噪声中型量子 (NISQ) 设备使得量子神经网络 (QNN) 的变分量子电路 (VQC) 的实现成为可能。尽管基于 VQC 的 QNN 在许多机器学习任务中取得了成功,但 VQC 的表示和泛化能力仍需要进一步研究,特别是涉及到经典输入的降维时。在这项工作中,我们首先提出了一个端到端量子神经网络,即 TTN-VQC,它由一个基于张量训练网络 (TTN) 的量子张量网络组成,用于降维,还有一个 VQC 用于函数回归。然后,我们针对 TTN-VQC 的表示和泛化能力进行误差性能分析。我们还利用 Polyak-Lojasiewicz (PL) 条件来表征 TTN-VQC 的优化特性。此外,我们对手写数字分类数据集进行了功能回归实验,以证明我们的理论分析。
噪声中型量子器件使得量子神经网络 (QNN) 的变分量子电路 (VQC) 得以实现。尽管基于 VQC 的 QNN 已在许多机器学习任务中取得成功,但 VQC 的表示和泛化能力仍需要进一步研究,尤其是在考虑经典输入的维数时。在这项工作中,我们首先提出了一种端到端 QNN,TTN-VQC,它由基于张量训练网络 (TTN) 的量子张量网络(用于降维)和用于函数回归的 VQC 组成。然后,我们针对 TTN-VQC 的表示和泛化能力进行误差性能分析。我们还利用 Polyak-Lojasiewicz 条件来表征 TTN-VQC 的优化属性。此外,我们对手写数字分类数据集进行了函数回归实验,以证明我们的理论分析是正确的。
摘要:近年来,变分量子电路 (VQC) 在量子机器学习中的应用大幅增加。VQC 的灵感来自人工神经网络,它作为大规模参数化函数逼近器,在广泛的 AI 任务中实现了非凡的性能。VQC 已经通过利用量子计算中更强大的算法工具箱,在泛化和训练参数要求更少等方面取得了令人鼓舞的成果。VQC 的可训练参数或权重通常用作旋转门中的角度,而当前基于梯度的训练方法并未考虑到这一点。我们引入了 VQC 的权重重新映射,以将权重明确地映射到长度为 2 π 的区间,这从传统 ML 中汲取了灵感,其中数据重新缩放或规范化技术在许多情况下都表现出巨大的好处。我们使用一组五个函数,并以变分分类器为例,在 Iris 和 Wine 数据集上对它们进行评估。我们的实验表明,权重重新映射可以提高所有测试设置中的收敛性。此外,我们能够证明,与使用未修改的权重相比,权重重新映射可将 Wine 数据集的测试准确率提高 10%。
Quantum机器学习(QML)是一个新兴的研究领域,主张使用量子计算来进步机器学习。由于发现了参数变化量子电路(VQC)以替换人工神经网络的可容纳能力,因此它们已被广泛采用以在量子机学习中的不同任务中采用。然而,尽管它们有可能超过神经网络,但VQC限于量子电路可伸缩性的挑战,仅限于小规模应用。为了解决这个缺点,我们提出了一种算法,该算法使用张量环表示在电路中压缩量子状态。使用张量环表示中的输入Qubit状态,单量子门保持张量环表示。但是,对于两个Qubit门而言,情况并非如此,其中使用近似值将输出作为张量环表示。使用此近似值,与精确的仿真算法相比,与指数增加相比,存储和计算时间在量子数和层数中线性增加。此近似值用于实现张量环VQC。使用基于梯度下降的算法进行张量环VQC参数的训练,其中使用了反向传播的效果方法。在两个数据集上评估了所提出的方法:分类任务的虹膜和MNIST,以使用更多量子位来显示提高准确性。关键字:变分量子电路,张量网络,有监督的学习,classifation我们使用各种电路架构实现了虹膜数据集的测试精度为83.33%,MNIST数据集的二进制和三元分类为99.30%和76.31%。IRIS数据集的结果优于Qiskit上的VQC上的结果,并且可扩展,这证明了VQC用于大规模量子机器学习应用程序的潜力。
摘要 — 量子计算是解决传统硬件上难以计算的问题的最有前途的新兴技术之一。现有的大量研究集中在使用门级变分量子算法进行机器学习任务,例如变分量子电路 (VQC)。然而,由于参数数量有限,VQC 的灵活性和表达能力有限,例如,在一个旋转门中只能训练一个参数。另一方面,我们观察到量子脉冲在量子计算堆栈中低于量子门,并提供更多控制参数。受 VQC 良好性能的启发,本文提出了变分量子脉冲 (VQP),这是一种直接训练量子脉冲以完成学习任务的新范式。所提出的方法通过在优化框架中拉动和推动脉冲幅度来操纵变分量子脉冲。与变分量子算法类似,我们训练脉冲的框架在嘈杂的中型量子 (NISQ) 计算机上保持了对噪声的鲁棒性。在二分类示例任务中,与 qiskit 脉冲模拟器(使用来自真实机器的系统模型)和 ibmq-jarkata 上的 VQC 学习相比,VQP 学习分别实现了高达 11% 和 9% 的准确率,证明了其有效性和可行性。在存在噪声的情况下,VQP 获得可靠结果的稳定性也得到了验证。索引术语 — 变分量子电路、量子计算、量子机器学习、变分量子脉冲、量子最优控制
摘要 - 量子量的有限供应和明显的量子噪声对嘈杂的中等规模量子(NISQ)时代的量子算法的能力施加了限制。NISQ设备具有多种应用,例如变分量子电路(VQC),它为困难优化和机器学习问题提供了答案。本文对NISQ环境中的量子变量分类进行了详尽的研究,重点是理解噪声对各种特征地图和VQC的影响。我们使用各种数据集评估量子分类器的有效性,从直接的二进制分类问题到更复杂的任务。我们的结果揭示了在减轻噪声效果,识别即使在嘈杂的情况下也表现出鲁棒性的特定量子电路设计中特征图和变异电路选择发挥作用的关键作用。为了强调量子机学习在解决NISQ设置中的复杂问题中的潜力,本研究强调了特征映射选择,变化电路设计,数据集复杂性和量子噪声之间的微妙相互作用。索引项 - 各个量子电路,NISQ设备,噪声,特征图,量子分类器。
摘要。本研究提出使用变分量子分类器对小麦品种进行自动分类。在大型数据集上训练的模型将能够识别种子特征和品种成员之间的独特模式和关系。这将使农民和研究人员能够更准确地识别小麦品种,从而可以改善种植和作物管理过程。这种方法不仅符合优化农业生产的需要,而且符合使用先进技术实现农业部门精准和高效的背景。通过这项研究,预计小麦生产的质量和可持续性将得到改善,这对粮食安全和可持续农业发展至关重要。该问题的目标是根据种子特征对小麦品种进行分类。VQC 在训练数据集上进行训练,然后在测试数据集上进行评估。为了评估模型的性能,使用了各种指标,例如准确度、精确度、召回率、F1 分数和混淆矩阵。
摘要 —在近期的噪声中尺度量子(NISQ)时代,高噪声将显著降低量子计算的保真度。更糟糕的是,最近的研究表明,量子设备上的噪声是不稳定的,也就是说,噪声会随时间动态变化。这导致了一个迫在眉睫的挑战性问题:在运行时,有没有办法在不稳定的设备上有效地实现一致的高保真量子系统?为了研究这个问题,我们以量子学习(又名变分量子算法)为载体,它具有广泛的应用,例如组合优化和机器学习。一种直接的方法是使用参数移位方法在目标量子设备上优化变分量子电路(VQC),然后再使用它;然而,优化的时间成本极高,在运行时不切实际。为了解决这个紧迫的问题,在本文中,我们提出了一种新颖的量子
摘要:在本文中,我们使用 Qiskit Python 环境中的两个量子分类器研究了量子机器学习在分类任务中的适用性:变分量子电路和量子核估计器 (QKE)。我们对这些分类器在六个广为人知且公开可用的基准数据集上使用超参数搜索时的性能进行了首次评估,并分析了它们在两个人工生成的测试分类数据集上的性能如何随样本数量而变化。由于量子机器学习基于酉变换,本文探讨了可能特别适合量子优势的数据结构和应用领域。在此,本文介绍了一种基于量子力学概念的新数据集,使用李代数的指数映射。该数据集将公开,并为量子霸权的实证评估做出了新的贡献。我们进一步比较了 VQC 和 QKE 在六个广泛适用的数据集上的性能,以将我们的结果情境化。我们的结果表明,VQC 和 QKE 的表现优于基本机器学习算法,例如高级线性回归模型(Ridge 和 Lasso)。它们无法与复杂的现代增强分类器(例如 XGBoost、LightGBM 或 CatBoost)的准确性和运行时性能相匹配。因此,我们得出结论,虽然量子机器学习算法在未来有可能超越经典机器学习方法,特别是当物理量子基础设施变得广泛可用时,但它们目前落后于经典方法。我们的调查还表明,与特别使用酉过程的量子方法相比,经典机器学习方法在基于组结构对数据集进行分类方面具有卓越的性能。此外,我们的研究结果强调了不同的量子模拟器、特征图和量子电路对所用量子估计器性能的重大影响。这一观察强调了研究人员需要详细解释他们对量子机器学习算法的超参数选择,因为这一方面目前在该领域的许多研究中被忽视了。为了促进该领域的进一步研究并确保我们研究的透明度,我们在链接的 GitHub 存储库中提供了完整的代码。