摘要 — 量子计算是解决传统硬件上难以计算的问题的最有前途的新兴技术之一。现有的大量研究集中在使用门级变分量子算法进行机器学习任务,例如变分量子电路 (VQC)。然而,由于参数数量有限,VQC 的灵活性和表达能力有限,例如,在一个旋转门中只能训练一个参数。另一方面,我们观察到量子脉冲在量子计算堆栈中低于量子门,并提供更多控制参数。受 VQC 良好性能的启发,本文提出了变分量子脉冲 (VQP),这是一种直接训练量子脉冲以完成学习任务的新范式。所提出的方法通过在优化框架中拉动和推动脉冲幅度来操纵变分量子脉冲。与变分量子算法类似,我们训练脉冲的框架在嘈杂的中型量子 (NISQ) 计算机上保持了对噪声的鲁棒性。在二分类示例任务中,与 qiskit 脉冲模拟器(使用来自真实机器的系统模型)和 ibmq-jarkata 上的 VQC 学习相比,VQP 学习分别实现了高达 11% 和 9% 的准确率,证明了其有效性和可行性。在存在噪声的情况下,VQP 获得可靠结果的稳定性也得到了验证。索引术语 — 变分量子电路、量子计算、量子机器学习、变分量子脉冲、量子最优控制
主要关键词