摘要:可再生能源生产的进展已指示对储能系统的先进发展的兴趣。全旗氧化还原电池电池(VRFB)是大规模存储的有吸引力的技术之一,因为其设计多功能性和可扩展性,寿命,良好的往返往返效率,稳定的容量和安全性。尽管有这些优势,但由于钒和细胞材料成本以及供应问题,钒电池的部署受到限制。提高堆栈功率密度可以降低每千瓦功率输出的成本,因此,目前正在进行密集的研发,以通过提高电极活性,降低细胞电阻,提高膜选择性和离子电导率等来改善细胞性能。为了评估这种密集的研发引起的细胞性能,采用了许多物理,电化学和化学技术,这些技术主要是在现场进行的,尤其是在细胞表征上。但是,这种方法无法在操作过程中对单元内的变化提供深入的见解。因此,已经开发了原位诊断工具,以获取与设计,操作参数和在VRFB操作过程中有关的信息。本文回顾了原位诊断工具,用于实现对VRFB的深入了解。对该领域的先前研究进行了系统的审查,并与所讨论的每种技术的优点和局限性一起提出,并提出指导研究人员确定最合适的技术的建议。
摘要——本文提出了一种优化钒液流电池 (VRFB) 能量容量恢复的新算法。VRFB 技术可以通过电解质再平衡部分恢复损失的容量来延长其使用寿命。我们的算法找到了这些再平衡服务的最佳“数量”和“时间”,以最小化服务成本,同时最大化能源套利收益。我们表明,该问题的线性化形式可以解析解决,并且目标函数是凸的。为了解决整个问题,我们开发了一种两步混合整数线性规划 (MILP) 算法,该算法首先找到最佳服务数量的界限,然后优化服务的数量和时间。然后,我们针对纽约 ISO 的能源套利案例研究给出了理论分析和优化结果。
利用大规模储能技术实现可再生能源的高效利用成为当今最热门的研究领域之一。1,2其中,钒氧化还原流电池(VRFB)具有容量设计灵活、循环寿命长、环境友好等优点,被认为是最有前途的大规模储能系统,目前已实现兆瓦时规模。尽管取得了巨大的成功,但其能量效率较低,无法与锂离子电池等其他电化学储能技术相媲美,寻找提高能量效率的方法至关重要。电极是钒离子氧化还原反应发生场所,是实现高效VRFB的关键。目前,石墨毡由于其在浓酸性条件下具有良好的稳定性和高导电性,被广泛应用于钒液流电池的电极材料。3 它们的催化活性低、比表面积小,不利于和促进
从这项研究中可以注意到,到2030年,锂离子电池(LIB)化学物质将继续成为主要的电池技术,预计镍锰钴(NMC)将是领先的LIB化学,而钒氧化还原流动电池(VRFB)预计将在固定的固定储量存储空间中获得大量的市场份额。南非,更是如此,南部非洲的子区域充满了许多电池矿物质,这些电池矿物质是Lib制造所需的。 此外,南非在LIB价值链中进行了一些早期活动,以及多元化的汽车行业,强烈依赖出口,最终需要过渡到EVS的制造,如果它将继续作为长期以来的主要出口商到其邻近市场的主要出口商。 此外,在较小程度上,明确的全球趋势和电动流动性的本地趋势为南非积极发展其本地LIB和VRFB价值链提供了强烈的动力。南非,更是如此,南部非洲的子区域充满了许多电池矿物质,这些电池矿物质是Lib制造所需的。此外,南非在LIB价值链中进行了一些早期活动,以及多元化的汽车行业,强烈依赖出口,最终需要过渡到EVS的制造,如果它将继续作为长期以来的主要出口商到其邻近市场的主要出口商。此外,在较小程度上,明确的全球趋势和电动流动性的本地趋势为南非积极发展其本地LIB和VRFB价值链提供了强烈的动力。
混合储能系统(HESS)结合了针对整体系统性能和寿命改进的不同储能技术。在这项工作中,研究了用于研究HESS设计的钒氧化还原流量电池(VRFB,5/60 kW/kWh)和锂离子电池(LIB,3.3/9.8 kW/kWh)的控制组合。文献综述介绍了正在全世界在电池中研究和应用的可用能源管理/功率分配选项。有必要有机会解决更好的HESS配置建筑应用的经济和能源观点。与单盘情景相比,基于能源管理的情况下,对这种赫斯的投资的理由应改善指标。在这种情况下,使用实验验证的电池性能模型,通过15年的经济和充满活力的分析,认为实时算法应用方法的四种方案可以通过15年的经济和能量分析来运行混合存储解决方案。将每种情况获得的结果与单个技术电池性能进行比较,以分析这种赫斯对竞争力以及在不同的ESS技术中的功率共享技术的相关性,这应该加权。在场景的定义中,从两个太阳能光伏装置(3.2 kwp和6.7 kwp)和服务建筑物的估计代表负载中考虑了实际的发电。hess Perfor mance通过特定的能源和经济关键绩效指标进行评估。结果表明,使用定制的能源管理策略(EMSS)使VRFB和LIB特征表现出了统治,除了增强VRFB作为单个技术的竞争力之外。此外,赫斯管理会影响季节性因素,从而有助于整个电力系统智能管理。
钒氧化还原液流电池 (VRFB) 电解质在高温 (> 40°C) 下热稳定性不足仍然是该技术开发和商业化的挑战,否则该技术将为间歇性可再生能源的长期储存带来广泛的技术优势。本文提出了一种组合添加剂的新概念,它显著提高了电池的热稳定性,使其能够在迄今为止测试的最高温度 (50°C) 下安全运行。这是通过结合两种化学性质不同的添加剂——无机磷酸铵和聚乙烯吡咯烷酮 (PVP) 表面活性剂实现的,它们共同减缓溶液中氧钒物质的质子化和聚集,从而显着抑制有害沉淀物的形成。具体来说,在 50°C 的静态条件下,沉淀率降低了近 75%。这一改进反映在完整的 VRFB 设备在 50°C 下连续运行超过 300 小时的稳健运行中,在 100 mA cm-2 电流密度下实现了令人印象深刻的 83% 的电压效率,并且在电极/流动框架或电解质槽中均未检测到沉淀。
微型发电是一种清洁高效的电力供应方式。然而,风能和太阳辐射的不可预测性对满足负载需求和维持微电网 (MG) 稳定运行提出了挑战。本文提出使用群体智能算法对具有净计量补偿策略的混合 MG 系统 (HMGS) 进行建模和优化。使用来自西班牙地区的真实工业和住宅数据,带有通用 ESS 的 HMGS 用于分析四种不同的净计量补偿水平对成本、可再生能源 (RES) 百分比和 LOLP 的影响。此外,还根据 MG 提供的最终 $/kWh 成本评估了两种 ESS,即钛酸锂尖晶石 (Li4Ti5O 12 (LTO)) 和钒氧化还原液流电池 (VRFB) 的性能。结果表明,净计量政策将盈余从 14% 以上减少到 0.5% 以下,并将可再生能源在 MG 中的参与度提高 10% 以上。结果还显示,在年度预测中,与使用不带净计量的 LTO 系统的 MG 相比,使用具有 25% 补偿政策的 VRFB 系统的 MG 可以节省超过 100,000 美元。
Solar Eco Systems 成立于 2010 年,主要致力于可再生能源。在过去十年中,我们的主要业务重点是能源效率和可再生能源领域的项目设计、安装和配置。我们在能源存储系统和能源监控、控制和管理方面的经验为采用 VRFB 技术和 LFP 存储以及专用逆变器的可扩展 MWh 系统开发了渠道。
摘要 — 在印度等一年中大部分时间外部温度都很高的国家,电动汽车 (EV) 充电站使用的电子面板和控制器需要安全且最佳地运行。这项研究首次使用太阳能电池存储集成式可切换玻璃结构,全天为电动汽车充电站的控制室提供暖通空调 (HVAC)。作为推广可再生能源和可持续出行方式的举措的一部分,电动汽车充电站配备了屋顶太阳能光伏电源。该系统使用钒氧化还原液流电池 (VRFB),通过提供持久的长期储能解决方案来确保能源安全。利用物联网技术的智能调度系统被证明可以有效满足建筑物的实时玻璃负载需求,同时考虑到动态气候条件。该系统结合了太阳能光伏、VRFB 存储和邻里电网。建议方法的效率已通过四种不同的临时场景验证:晴天、间歇性多云、长时间多云以及太阳辐射低且电网频繁停电。由于该方法可灵活应用于各种情况,因此有可能大大提高容量。
图 1. 本研究中提出的工作方案:使用改进的 Hummers 方法 [40, 52] 对石墨进行氧化和剥离,然后通过可持续热液还原法以水为溶剂进行还原以生成 rGO。合成后干燥方法可以控制 rGO 微粒的最终表面积和孔结构。将电催化剂流动沉积在碳毡电极上,并应用于 VRFB 单电池中以评估其对电化学性能的影响。