摘要 摘要 通过头戴式显示器 (HMD) 观看虚拟环境时,经常会出现晕动症。本研究检查了 vection(即虚幻的自我运动)和感知头部运动与实际头部运动之间的不匹配是否会导致这种不良体验。观察者在通过 Oculus Rift HMD 观看立体光流时进行振荡偏航头部旋转。在 3 种对物理头部运动进行视觉补偿的条件下测量了 vection 和晕动症:“补偿”、“未补偿”和“反向补偿”。当 HMD 模拟较近的光圈时,发现 vection 在“补偿”条件下最强,在“反向补偿”条件下最弱。然而,在全视野曝光期间,这 3 种条件下的 vection 相似。晕动症在“反向补偿”条件下最严重,但在其他两种条件下并无不同。我们得出结论,感知头部运动与实际头部运动之间的不匹配会严重导致晕动症。矢量和晕屏之间的关系较弱且显得复杂。
特雷维索、那不勒斯、珀斯,2023 年 6 月 7 日 - SolidWorld Group S.p.A.(股票代码:S3D),领先的数字技术、3D 打印和增材制造集团的母公司,宣布将与 Marotta S.r.l. 和 Vection Technologies 合作开展欧洲航天局的 HEXA-FLY(高速实验飞行器)项目(ESA)。作为该项目的一部分,SolidWorld 提供 3D 设计软件,通过与合作伙伴系统的集成,该软件将设计集成系统并执行全球民用运输所需的高超音速飞机模拟。借助 HEXA-FLY 项目,欧洲将在一定程度上借助意大利的技术,获得与全球领先大国相当的高超音速技术。该飞机的原型机正处于设计完成阶段,将于 2024 年开始建造。试飞预计将于 2026 年进行。 SolidWorld Group、Marotta S.r.l.(一家专门生产航空航天和国防高精度零部件和组件的公司)与 Vection Technologies(一家领先的国际 3D 和 VR(虚拟现实)企业解决方案提供商,ASX:VR1,OTC:VCTNY)之间的合作,为高度复杂的航空航天项目开发了革命性的扩展现实 (XR) 解决方案。Marotta S.r.l. 的航空航天工程师将使用 Vection Technologies 的 3DFrame 平台与 Dassault Systèmes 的 SolidWorks 设计软件集成来开发原型机
9月30天的OLR异常图显示了美国萨摩亚对南部库克群岛和法属波利尼西亚的负OLR(对流增加)的区域。新喀里多尼亚和新西兰之间存在着另一个区域。在北半球的Palau,FSM,RMI,Nauru和Kiribati上,异常高的OLR(对流减少)的区域显而易见。在南半球的大多数PNG,所罗门群岛,瓦努阿图,斐济,瓦利斯和富图纳和图瓦卢,也观察到了对流的区域。注意:OLR下面的全球地图突出显示了云彩增加或减少的区域。顶部面板是每平方米瓦的总OLR(w/m 2),底部面板是异常(当前减去1979-1998的气候平均值),w/m 2。在底部面板中,负值(蓝色阴影)表示正常的云状,而正值(棕色阴影)表示低于正常的浑浊。
由于斯托克斯方程[1,2]的运动学可逆性,最令人信服的例证是 G.I.泰勒的库埃特细胞实验[3,4],低雷诺数下的流体混合需要平流(搅拌)和扩散[5,6]的相互作用。剪切引起的扩散混合增强,也称为泰勒扩散[7],是许多生物和人工系统的基础,从纤毛水生微生物对氧气、营养物质或化学信号的吸收,到微反应器和“芯片实验室”应用[8-12]。事实上,它代表了任何由平流扩散方程控制的非平衡松弛过程的基本特征[5],包括对流层上部和平流层的污染物扩散[13]。因此,设计最优混合方案是一个既具有基础性又具有实际意义的问题[14-17],并且与人们对将最优控制理论概念应用于非平衡物理[18-25]日益增长的兴趣相一致。传统上,全局混合效率通过施加一个初始模式(如溶质分布或温度分布)并通过其 L 2 /Sobolev 范数[26, 27]或 Shannon 熵的变化来表征搅拌对后者的影响[14, 28, 29]。局部混合也可以用 Lyapunov 指数来量化[2, 30]。最近,以混合前后粒子位置之间的互信息的形式引入了一种通用的无假设(即与模式无关)的全局混合效率度量[15]。在实验中,可以使用无损压缩算法从示踪数据中估计互信息 [ 31 ]。在这里,我们将这一新度量应用于无散度线性剪切流混合流体的问题。将时间相关的剪切速率定义为我们的协议,我们将互信息重新表示为后者的非线性函数,并精确求解最优控制问题,以在总剪切和总粘性耗散的约束下得出最优协议