Roketsan 开发了一种带有电子安全与武装机制的机载飞行终止系统,并已成功完成三次开发飞行。COTS 产品用于塑造 FTS 的架构,该系统已被证明是一种可行、可重新配置且快速的解决方案,适用于计划飞行测试活动的紧凑时间表。结果表明,FTS 能够在飞行器失控时通过终止飞行来保护生命和财产。它能够取代当前的人在环系统或与它们并行运行。FTS 可在飞行前根据靶场安全机构和用户商定的任务特定规则进行配置,以保护公众并确保任务成功。本文讨论了该项目的动机,描述了开发方法,并概述了架构和与 RCC 319 标准的兼容性。
每年,我和我的妻子 Miriam、我们的孩子 Hannah、Eve 和 Jesse 都会观看波士顿马拉松比赛,比赛就在我们家附近举行。在警察护送和新闻团队呼啸而过的喧闹声之后,当前一两名选手飞驰而过时,现场一片宁静。比赛进行了将近两个小时,只剩下三英里的路程,他们的状态完美,呼吸顺畅,面容平静。然后喧闹声又恢复了。在领先者后面几十码的地方,是一群紧密团结的运动员,他们都是世界级的,但看起来并不那么好。他们的节奏有点不对劲;他们的表情略显痛苦。他们相互推挤,但尽管付出了所有努力,他们唯一的希望就是获得亚军,追赶那些被追赶但从未被追上的领跑者。波士顿马拉松每年只举办一次,但我们每天都能看到公司之间同样激烈的竞争,争夺安慰奖,而一两家公司却轻松获胜。在汽车制造、商用航空、金属加工、
1*Pragati 工程学院,机械工程系副教授,安得拉邦 2* Aditya 工程学院,机械工程系副教授,安得拉邦 3*JNTU KAKINADA,机械工程系教授,安得拉邦 摘要 本研究旨在通过实验和计算研究风洞中速度分布的均匀性。风洞是一种仪器,用于检查流体流过完全浸没的物体时产生的流线和力。uni-insta 的风洞(300 毫米*300 毫米)设计为具有较大的工作段,以便能够布置大量场地模型。该风洞内置边界层模拟系统,可以很好地模拟大气速度梯度。风洞围绕分段式木质框架建造,在沉降长度和工作段采用外部级胶合板,侧面采用层压板覆盖,便于维护。内置钟形安装入口,后面是平滑的沉降长度室,由分级良好的蜂窝状细网组成。工作部分的侧面板是透明的丙烯酸盖,可提供较大的可视区域。额外的哑光后侧面板为烟雾轨迹提供摄影构造。工作部分的顶板是可拆卸的,以便固定模型。关键词:- uni-insta
1*Pragati 工程学院,机械工程系副教授,安得拉邦 2* Aditya 工程学院,机械工程系副教授,安得拉邦 3*JNTU KAKINADA,机械工程系教授,安得拉邦 摘要 本研究旨在通过实验和计算研究风洞中速度分布的均匀性。风洞是一种用来检查流体流过完全浸没的物体时产生的流线和力的仪器。uni-insta 的风洞(300 mm*300 mm)设计为具有较大的工作段,以便能够布置大量场地模型。隧道内置边界层模拟系统,可以很好地模拟大气速度梯度。隧道围绕分段式木质框架建造,在沉降长度和工作段采用外部级胶合板,侧面采用层压板覆盖,便于维护。钟形安装入口后面是平滑的沉降长度室,由分级良好的蜂窝状细网组成。工作部分的侧板是透明的丙烯酸盖,可提供较大的可视区域。额外的哑光后侧板为烟雾轨迹提供了摄影构造。工作部分的顶板是可拆卸的,以便固定模型。关键词:- uni-insta 的风洞、丙烯酸盖、流线。
温度补偿范围:15-35°C (60-95°F):测量范围:0-70°C (32-158°F) 准确度:读数的 ±5% 或 ±0.05m/s (10fpm) 测量准确度 1:±1°C (1.8°F) 读数的 ±10% 或 ±0.05m/s (10fpm) 分辨率:±0.1°C 重复性:读数的 ±1% 温度补偿范围:F900 是热气流传感器;它对空气密度的变化很敏感,并根据一组标准条件(25°C (77°F)、760mmHg (101.325kPa) 和 0%RH)指示速度。F900 的设计使得当在规定的温度补偿范围内使用时,传感器指示非常接近实际空气速度,并且只需要最小的补偿来考虑气压或高度的变化。相对湿度的变化影响很小,通常可以忽略不计。
简介:行星科学家早就认识到,如果能在地球上以可进行实验室分析的状态捕获小行星和彗星尘埃颗粒,并获得每颗颗粒的精确速度和轨迹信息以揭示其来源,那么对太阳系早期历史及其演化的理解将取得巨大进步。这个真正重要的目标体现在选择宇宙尘埃收集设施 (CDCF) 作为空间站最初两个设施级有效载荷之一。最近对空间站的重新设计导致取消 CDCF,这反过来又给正在进行的仪器开发带来了很大的不确定性。因此,应美国宇航局总部太阳系探索部代码 SL 的要求,组织了当前的研讨会,以解决以下三个问题:1. 有哪些最先进的技术可以以最小的破坏性捕获太空中的超高速粒子并测量它们的速度和轨迹? 2. 应将资源投入到哪些方面以推进尚未成熟的技术? 3. 这些技术可以应用于哪些特定的航天器任务,哪些飞行机会具有科学依据? 本次研讨会汇集了目前在子系统层面开发该技术的大部分个人和/或团队,以成功实现粒子回收和轨迹传感器开发,包括
摘要 长壁开采产量的稳步增长要求操作人员使用更多的通风空气,以控制和稀释可吸入粉尘。采煤机速度的显著提高也要求长壁支架以更快的速度推进。这两个因素都可能影响长壁开采面上的总体可吸入粉尘水平,因为随着支架的降低和推进,从顶棚顶部落下的破碎材料会直接夹带到气流中。为了解决这个问题,匹兹堡研究实验室从四个长壁开采面上收集了可吸入粉尘样本,以表征盾构产生的粉尘。本文研究了空气速度和盾构推进速度对可吸入粉尘水平的影响。本文还讨论了目前用于减少盾构粉尘的工程控制措施以及国家职业安全与健康研究所 (NIOSH) 正在研究的替代控制措施。