正常血流和代谢物分布从脑微血管向神经元组织的偏离与年龄相关的神经变性有关。通过空间和时间分布的神经图像数据告知的数学模型已成为重建整个大脑正常和病理氧递送的一致图片的工具。不幸的是,当前的脑血流和氧交换的数学模型的大小过大。由于不完整或生理上不准确的计算域,由于巨大长度尺度差异而导致的数值不稳定性以及与良好网格分辨率下的条件数量恶化相关的收敛问题,他们进一步遭受了边界影响。我们提出的有关血液和氧微灌注模拟的模拟量离散化方案不需要昂贵的网格产生,从而导致其临界氧转移问题的基质大小和带宽大大减少了至关重要的好处。紧凑的问题制定产生快速而稳定的收敛性。此外,通过使用基于图像的脑血管网络合成算法产生非常大的硅皮质微循环复制品可以有效地抑制边界效应,以便灌注模拟的边界与感兴趣的区域相去甚远。在皮质的大量部分上进行了大量模拟,并且具有适度的计算机资源,其特征分辨率向微米尺度降低了。在年轻小鼠和老年小鼠的同类中,通过体内氧灌注数据证明并验证了新方法的可行性和准确性。我们的氧气交换模拟量化了血管附近的陡峭梯度,并指向病理变化,可能导致老年大脑的神经de虫产生。这项研究旨在解释解剖结构之间的机械相互作用以及它们可能如何改变疾病或随着年龄的变化。与年龄相关变化的严格量化具有重大关注,因为它可能有助于寻找痴呆症和阿尔茨海默氏病的成像生物标志物。
摘要。深度神经网络已成为自动分割 3D 医学图像的黄金标准方法。然而,由于缺乏对提供的结果进行可理解的不确定性评估,临床医生仍然无法完全接受它们。大多数量化不确定性的方法,例如流行的蒙特卡罗 dropout,都限制了体素级预测的某种不确定性。除了与真正的医学不确定性没有明确的联系外,这在临床上也不令人满意,因为大多数感兴趣的对象(例如脑病变)都是由体素组组成的,而体素组的整体相关性可能不会简单地归结为它们各自不确定性的总和或平均值。在这项工作中,我们建议使用创新的图形神经网络方法超越体素评估,该方法由蒙特卡罗 dropout 模型的输出训练而成。该网络允许融合三个体素不确定性估计量:熵、方差和模型置信度;并且可以应用于任何病变,无论其形状或大小如何。我们证明了我们的方法在多发性硬化症病变分割任务中的不确定性估计的优越性。
揭示了这些症状与公认的神经或医学状况之间的不相容性(2)。与其他神经系统疾病相比,FND与残疾水平相似,身体和心理生活质量受损(3)。FND的预后通常具有挑战性,多达40%的患者报告的结果与最近的7年随访期间相似或比其初始状况更糟糕或更糟糕的结果(4)。传统上,FND的诊断依赖于症状的有机原因。然而,最近的证据为FND的病理生理学提供了新的见解,从而促进了更全面的理解和对潜在生物标志物的识别(5)。在这项研究中,进行了一项素分析以研究FND的结构性大脑变化。我们的目的是确定特定的定量测量是否可以用作区分各种FND的潜在生物标志物。
我们重点介绍迄今为止我们所知的土壤和土地质量、天气和市场准入方面的异质性。这种普遍存在的异质性不仅对持续采用技术有影响,而且对创造适当的技术也有影响。非洲的技术投资率一直很低,无论是公共部门还是私营部门。非洲农民在农业研发上的平均支出比发达国家低两个数量级。考虑到农民所面临的环境,他们缺乏生产技术,而且一般技术也未能适应这种环境,因此这并不奇怪。此外,肥料等投入的成本仍然非常高,因为这些投入大多是进口的。着重降低这些成本(例如通过改善基础设施或鼓励更多本地生产)是让这些技术为更广泛的农民群体带来利润的一条重要途径。
这是一篇在接受后经过改进的文章的 PDF 文件,例如添加了封面和元数据,以及格式化以提高可读性,但它还不是最终的记录版本。此版本在以最终形式发布之前将经过额外的文字编辑、排版和审查,但我们提供此版本是为了让文章尽早可见。请注意,在制作过程中,可能会发现可能影响内容的错误,并且适用于期刊的所有法律免责声明均适用。
软机器人设计是一个复杂的领域,由于其复杂且广阔的搜索空间,面临着独特的挑战。在过去的文献中,进化计算算法(包括新型概率生成模型(PGM))在该领域显示了潜力。但是,这些方法是效率低下的样本,主要关注运动任务中的刚性机器人,这限制了它们在机器人设计自动化中的性能和应用。在这项工作中,我们提出了Morphvae,这是一种创新的PGM,它结合了多任务培训方案和精心制作的采样技术,称为“连续自然选择”,旨在增强样品效率。这种方法使我们能够从各种任务和时间进化阶段进行评估的样本中获得见解,同时保持光学效率和生物多样性之间的微妙平衡。通过各种运动和操纵任务的广泛表达,我们证实了形态在产生高性能和多样化设计方面的效率,超过了竞争性基线的性能。
摘要本文量化了限制激光扫描匹配精度的误差源,特别是对于基于体素的方法。LIDAR扫描匹配匹配,用于DEAD RECKONING(也称为LiDAR Odometry)和映射,计算最能使一对点云对齐的旋转和翻译。透视错误是从不同角度观看场景时发生的,从每个角度看,不同的表面变得可见或遮挡。要解释在数据中观察到的透视异常,本文模拟了代表城市景观的两个对象的透视误差:一个圆柱形柱和一个双壁cor ner。对于每个对象,我们提供了基于体素的LIDAR扫描匹配的透视误差的分析模型。然后,我们分析当配备激光雷达的车辆越过这些物体时,透视误差是如何产生的。
摘要:结构性磁共振成像(SMRI)研究表明,ASD患者的大脑结构异常,但是结构变化与社会通知问题之间的关系尚不清楚。本研究旨在通过基于体素的形态计量学(VBM)探索ASD儿童大脑中临床功能障碍的结构机制。筛选自闭症脑成像数据交换(Abide)数据库的T1结构图像后,有98名8-12岁儿童患有ASD的儿童与105名8-12岁儿童匹配典型发育(TD)。首先,本研究比较了两组之间的灰质体积(GMV)差异。然后,这项研究评估了ASD儿童中GMV与自闭症诊断观察计划(ADO)的通信和社交互动的小计分数之间的关系。研究发现,ASD中的异常大脑结构包括中脑,蓬蒂因,双侧海马,左parahampocampal回,左颞颞回,左颞叶,左右圆极,左中颞回和左上胸部上流回。此外,在ASD儿童中,ADO上的通信和社交互动的小计分数仅与左海马中的GMV显着相关,左海马,剩下的颞上回和左中间颞回。总而言之,ASD儿童的灰质结构异常,ASD儿童的临床功能障碍与特定区域的结构异常有关。
摘要 - 目标:结构性大脑图通常仅限于定义节点,因为灰质区域是地图集的,边缘反映了淋巴结对之间的轴突投影的密度。在这里,我们将脑面膜内整个体素集成为高分辨率,主题特定图的节点。方法:我们使用扩散张量和从扩散MRI数据得出的扩散张量和方向分布函数来定义局部素至素连接的强度。我们在人类连接项目的数据上研究图形的拉普拉斯光谱特性。然后,我们通过Procrustes验证方案评估Laplacian本征模的受试者间变异性的程度。最后,我们证明了通过图形信号处理的基本解剖结构来塑造功能性MRI数据的程度。结果:图形拉普拉斯特征模式表现出高度分辨的空间专题,反映了与主要白质途径相对应的分布模式。我们表明,这种高分辨率图的特征空间的固有维度仅仅是图尺寸的一部分。通过在低频图Laplacian eigenmodes上投射任务和静止状态数据,我们表明大脑活动可以通过一小部分低频组件来很好地近似。结论:所提出的图形在研究大脑时开放了新的途径,无论是通过图或光谱图理论探索其组织特性,或者通过将它们视为在单个层面上观察到大脑功能的支架。