摘要 - Web应用程序防火墙(WAF)通过一组安全规则检查了往返Web应用程序的恶意流量。它在保护Web应用程序免受Web攻击方面起着重要作用。但是,随着网络攻击的复杂性,WAF越来越难以阻止旨在绕过防御力的变异恶意有效载荷。响应这个关键的安全问题,我们开发了一个新型的基于学习的框架,名为WAFB Ooster,旨在公布WAF检测中的潜在旁路,并建议规则来强化其安全性。使用影子模型和有效载荷生成技术的组合,我们可以识别恶意有效载荷,并根据需要删除或修改它们。WAFB Ooster使用高级聚类和正则表达式匹配技术为这些恶意有效载荷生成签名,以修复我们发现的任何安全差距。在我们对八个现实世界WAF的全面评估中,WAFB Ooster将突变的恶意有效载荷的真实拒绝率从21%提高到96%,而没有虚假拒绝。WAFB Ooster达到的虚假接受率3×低于生成恶意有效载荷的最先进方法。与WAFB Ooster一起,我们向前迈出了一步,以确保Web应用程序免受不断发展的威胁。
摘要 - 应用程序编程界面(API)的网络攻击已变得非常先进和复杂,在确保API方面构成了新的挑战。这产生了迫切需要使用同样复杂的网络安全工具来保护。API在连接企业内部和外部的不同软件应用系统方面绝对不可或缺。API有效地有效地移动数据,甚至通过销售数据和服务来帮助组织产生收入。这些因素大大飙升了正在构建的API数量,因此增加了公司的网络攻击曝光,并通过网络暴露于网络上,以供不良行为者利用。攻击者通常由于在实施或托管过程中的网络安全惯例不佳而利用API中的许多漏洞。这些漏洞使不良行为者能够获得组织内敏感数据和系统的未经授权访问。用来燃料的燃料是可轻松的恶意无代码类型软件和工具,这些软件和工具可以发射自动攻击,绕过标准的安全措施,保持完全未被发现,有时甚至没有从入侵检测系统中进行追踪。当前对这些主题的研究存在差距,这仅突出了实施某些基本的网络防御机制的必要性,但并未明确强调一些提前工具(例如WAAP,WAF,TLS和MTLS)的作用和用法,这些工具有助于巩固API的安全性。本研究旨在检查并介绍可用于防御复杂现代网络攻击的这些高级保护工具,并为组织如何实施这些安全措施来保护API的方法建立了一种方法。
GLP-1受体激动剂 Semaglutide在管理2型糖尿病和肥胖症方面表现出了显着的功效。 GLP-1药物市场被GlobalData预测,到本十年末,在强劲的需求驱动到十年末。 但是,现有的治疗方案,例如注射剂和口服半卢比,患者偏好的面部限制以及生物利用度和可变性。 此外,对注射GLP-1药物的需求不断增长,超越了供应量,而这些注射剂的产量增加会带来环境挑战。 IXB 401提供了一种新颖的解决方案,可以解决这些问题,同时增强患者合规性并减少环境影响。Semaglutide在管理2型糖尿病和肥胖症方面表现出了显着的功效。GLP-1药物市场被GlobalData预测,到本十年末,在强劲的需求驱动到十年末。但是,现有的治疗方案,例如注射剂和口服半卢比,患者偏好的面部限制以及生物利用度和可变性。此外,对注射GLP-1药物的需求不断增长,超越了供应量,而这些注射剂的产量增加会带来环境挑战。IXB 401提供了一种新颖的解决方案,可以解决这些问题,同时增强患者合规性并减少环境影响。IXB 401提供了一种新颖的解决方案,可以解决这些问题,同时增强患者合规性并减少环境影响。
•KAW发布了提名WAF计划的呼吁,SLU Grants办公室与教职员工的研究人员达成协议,请准备一份文档,并提供时间表,有关KAW指南的更新信息以及SLU的内部提名程序。然后将信息发送给所有部门负责人和研究人员,并在SLU员工网络上发布。•每个教师邀请其部门为内部和外部WAF候选人提供建议,他们都应根据附录1。请使用以下链接下载用于在SLU上撰写WAF预言的模板(“用于preposals的模板在Slu“ OCH” CV“ CV” CV模板上,用于SLU的WAF Preposals”)。预言必须在2024年9月16日之前寄给提名教师的研究官。
RS232-MDB (PC2MDB) 和 MDB-USB 均用于将 PC 或任何其他 RS232 设备连接到 MDB 接口自动售货机。Pi2MDB 用于将 Raspberry pi 板连接到自动售货机。并且可以通过 RS232、USB 设备或 Raspberry pi 轻松与 MDB 接口自动售货机集成。这些适配器将自动回复 VMC Poll 命令,因此用户无需考虑 Poll 命令。除轮询命令之外,来自 VMC 的任何数据都将被重定向到 RS232 端口。此外,这些 MDB 适配器将处理与 VMC 的所有开机或复位数据通信。如果您想将任何数据将 HEX 数据发送到 VMC,只需与校验和一起发送到适配器盒,然后适配器盒将在 VMC 轮询请求期间发送到 VMC。因此,用户只需要在 PC 软件开发期间熟悉与 VMC 的自动售货会话。并且用户应该仔细阅读 MDB 协议以完成测试和开发。
注意:有调查结果的报告必须提交 ACAP。没有调查结果的报告无需采取进一步行动。活动将提交活动纠正行动计划(ACAP 摘要报告 FEVA 表格 32-601)NLT IAW HWMP 下方检查报告中指定的日期。如果未在指定日期之前收到 ACAP,将通过 MSG 指挥官向指挥官或主任发送备忘录。
为了分析 UBM 疲劳,使用热机械有限元模拟研究了圆形衬垫界面处的载荷。由于 Hutchinson 和 Sou [15] 推断出拉伸法向载荷的界面韧性远低于剪切载荷,因此重点关注法向载荷。模拟研究了 T = -40°C 至 125°C 的温度范围。在低温下 (T = -40°C) 存在最高的拉伸法向载荷。这可以通过焊球材料在低温下蠕变减少 [16] 来解释,这会导致更高的弹性应力。此外,在低温下可以检测到焊球的倾斜。倾斜是由 PCB 和封装的 CTE 不匹配引起的。因此,拉伸法向应力位于界面朝向封装周边的一侧(见图 3)。图 3 中的色标直观地显示了拉伸和压缩应力的定性分布。这些模拟结果与分层实验结果相一致(见图 1):在焊盘的相同外部区域也发现了分层。
市场研究公司 Omdia 在其《SiC 和 GaN 功率半导体报告——2020 年》(见第 74-75 页)中指出,受混合动力和电动汽车 (HEVs/EVs)、电源和光伏 (PV) 逆变器需求的推动,碳化硅 (SiC) 和氮化镓 (GaN) 功率半导体市场预计将在 2021 年超过 10 亿美元,因为它正迅速从初创公司主导的行业发展为由大型知名功率半导体制造商主导的行业。例如,三菱电机现已推出其第二代全 SiC 功率模块,采用新开发的低功耗工业用 SiC 芯片(第 15 页)。此外,在美国空军研究实验室 (AFRL) 的一项第一阶段小型企业技术转移研究 (STTR) 项目的资助下,结构材料工业公司 (SMI) 开发了一种用于 4H-SiC 的低温化学气相沉积 (CVD) 工艺,可实现用于高压功率器件的厚外延层的更高速率生长(同时缩短工艺周期和设备磨损)(第 14 页)。与此同时,SMI 还与纽约州立大学 (SUNY) 奥尔巴尼理工学院合作,获得了美国能源部授予的第一阶段 STTR 合同,以开发普遍的制造基础设施 - 包括改善大晶圆金属有机化学气相沉积 (MOCVD) 均匀性 - 用于在高电流和高电压 (>20A/>600V) 下运行的 GaN,用于电动汽车电力电子设备(第 16 页)。正在推进 GaN 器件功能的制造商包括 EPC,该公司已推出其最新的 100V eGaN FET 系列,面向自动驾驶汽车的 LiDAR 等应用(第 18 页)。GaN 器件在电源应用(例如消费电子产品的快速充电器)中的应用持续激增(尤其是随着性能的提高)。例如,在 Apple iPhone 12 预计于今年晚些时候发布之前,移动配件品牌 Spigen PowerArc 已在新款 20W ArcStation Pro 中使用了 Navitas 的 GaNFast 电源 IC。与此同时,中国的 OPPO 已采用 GaNFast 电源 IC,用于据称是最小、最薄、最轻的 110W 智能手机、平板电脑和笔记本电脑快速充电器(第 19 页)。除了通过向制造合作伙伴 Nexperia 授予许可来增加收入外,Transphorm 还扩展了其高压 GaN 电源转换设备产品组合,旨在推动快速充电电源适配器的普及(第 20 页)。GaN Systems 宣布推出一款新的参考设计,用于包括手机和笔记本电脑在内的消费电子产品中的高功率密度 65W 充电器(第 21 页)。Mark Telford,编辑 mark@semiconductor-today.com该公司还发布了一份白皮书,展示了其 GaN 器件的可靠性,超过了 JEDEC 和 AEC-Q101 测试规范的标准。在新加坡,IGSS GaN (IGaN) 正在建立一个 Epi 中心,作为 4-8 英寸晶圆 GaN MOCVD 的商业和全球联合实验室,将于 2021 年中期投入运营(第 22 页)。最近,就在 9 月 29 日,总部位于荷兰的 NXP Semiconductors 在其位于亚利桑那州钱德勒的工厂开设了新的 8 英寸晶圆 GaN 晶圆厂,专门用于蜂窝基础设施的 5G RF 功率放大器。新晶圆厂已经通过认证,初始产品正在市场上迅速推广,预计将在 2020 年底达到满负荷生产(下一期新闻页面将全面报道)。
摘要:我们致力于将 CZ 晶片转移到具有多孔分离层的可重复使用衬底上的外延生长 Si 和 Ge 晶片(“无切口晶片”),以减少材料和能源消耗。我们报告了将无切口晶片方法应用于 Si 和 Ge 晶片的进展。对于 Si,多年来,我们在自制的 CVD 反应器(“RTCVD”)中开发模板和外延生长晶片(SiEpiWafers),现在使用新的微电子 CVD 反应器(“PEpi”)将它们的质量提升到一个新的水平,这使我们能够生长具有可调厚度和掺杂水平(n 型和 p 型)的 6 英寸和 156x156 mm²(M0)外延 Si 晶片。在第一次测试运行中,我们实现了高达 840 µs 的生长寿命和约 10% 的总厚度变化。对于 Ge,我们成功开发并理解了多孔层堆栈,从而获得了 4 英寸可拆卸 Ge 模板,用于未来的 Ge 或 III-V 外延生长。