(LOX),一氧化氮合酶(NOS)和环氧合酶(COX)。这些自由基和氧化应激分子会导致直接或间接的氧化DNA损伤,从而导致各种细胞存活调节机制,例如有丝分裂灾难,衰老,凋亡和自噬(Wei等,2019)。在抗肿瘤疗法中,IR不仅诱导压力诱导的调节性细胞死亡,而且还通过影响肿瘤相关的细胞因子或特定抗原而促进抗肿瘤免疫反应,从而诱导免疫原性细胞死亡(Zhu等,2021)。在内皮细胞和造血系统中,IR和ROS破坏细胞膜完整性,导致局部钙插入,溶酶体融合,并通过生物物理机制诱导细胞死亡(Ferranti等,2020)。辐射还可以裂解二硫键并改变蛋白质构象,破坏蛋白质的正常生物学功能并影响细胞活性(Fitzner等,2023)。在DNA上,IR诱导了自由基阳离子(孔)的产生,导致DNA-蛋白交联(DPCS)(Wen等,2023)。此外,IR通过瞬时瞬时分子共振的快速衰减而引起了显着量的单链和DSB,该共振位于基本DNA成分上(Boudaïffa等,2000)。
心血管疾病(CVD)是影响心脏和/或血管的疾病簇,是全球死亡和残疾的最大原因。在2019年,据估计,1,790万死亡归因于CVD,这是全球死亡的第一个主要原因(1)。CVD具有复杂的病因,并且在明显的症状事件发生前经常发展数十年。早期干预对于降低CVD的发病率和死亡率至关重要,这将对公共卫生负担产生深远的影响。因此,对不同危险因素的因果效应(尤其是在微观和分子水平上)的因果关系的改进,可以重新预防策略,并为CVD的治疗干预提供新的靶标。细胞因子在调节炎症反应,改变血管收缩和阻碍内皮依赖的血管舒张方面起关键部分,因此,它们可能提供预防CVD的潜在靶标(2)。广泛的流行病学证据已经证明了细胞因子与CVD之间的密切关联。例如,一项包含29个队列研究的荟萃分析表明,几种细胞因子,例如白介素6(IL-6),IL-18和肿瘤坏死因子α(TNF-a),每种都与发展冠状动脉疾病(CAD)的风险(CAD)相关,在近似log-log-log-fistry-lorig-dipplist fivestion危险中,传统的风险是独立于传统的(3)。另一项涉及17,180名个体的研究发现,单核细胞趋化蛋白1(MCP-1)的循环水平与中风长期风险的正相关(4)。然而,经典的观察设计容易逆转因果关系,并混淆了促进因果的推论,并且对细胞因子干预进行临床试验具有挑战性。Mendelian随机化(MR)是一项可靠的技术,可以解决上述观察性研究伴随的局限性,并通过将遗传变异作为工具变量(IVS)提供了最高水平的证据层次结构(5)。此方法,当满足某些假设时,可以确定
Michele Boichard(法国 INRAE)、Tiziana Brevini(意大利米兰大学)、Emily Clark(英国 EMBL-EBI)、Richard Crooijmans(荷兰 WU)、Fulvio Gandolfi(意大利米兰大学)、Elisabetta Giuffra(法国 INRAE)、Marta Godia(荷兰 WU)、Matthew Kent(挪威 NMBU)、Eduard Murani(德国 FBN)、Alexey Sokolov(英国 EMBL-EBI)、Yogmatee Roochun(EMBL-EBI)、Ole Madsen(荷兰 WU)、Ramiro Alberio(英国诺丁汉大学)、Christian Tiambo(肯尼亚 CTLGH)、Finn Grey(英国爱丁堡大学)、Bertrand Pain(法国 INRAE)、Joseph Robertson(挪威 NMBU)、Sigbjørn Lien(挪威 NMBU)、Kate Sutton(英国爱丁堡大学)、Bart Gadella(荷兰乌得勒支大学)。
Authors: Yaning V. Liu 1 , Mahmoud A. Bassal 1.2 , Migar Kavishka 8 , Qun-Shuo Wu 1 , Qun-Shuu Wu 1 , Junsu Kwon 1 , Quing 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1 , Hong 1,Hong 1,Hang Tan1。AlexanderK. Ebralidze 2,Minh T.N.lea 8,li 6,benoukraf or o 1.7,Ruscio* 4.5的Annalisa,Daniel G. Tenen* 1.2.4
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑
z yang*,z cai*,h mei*,s liu*,z chen*,w xiao,y wei,z qing,c wei,c wei,b dai,w wu,w wu,c qian,d lin,d lin,z liu,l yang,l yang。合成体:具有分层人类模型的合成数据集用于3D人类的感知和建模。国际计算机视觉会议(ICCV)2023。
在女性生殖系统中,最致命的癌性生长被称为上皮性卵巢癌 (EOC)。根据 2020 年全球癌症统计数据,卵巢癌在全球女性恶性肿瘤中排名第七,每年新发病例超过 310,000 例(Lee 等人,2022 年;Konstantinopoulos 和 Matulonis,2023 年)。卵巢癌每年夺走约 210,000 人的生命。2020 年,中国有 60,000 例新诊断病例被诊断为卵巢癌,并导致 40,000 人死亡(Zhao 等人,2023 年)。晚期卵巢癌患者的 5 年生存率约为 30%。随着多次复发,治疗和复发的间隔变得更短,导致对铂类药物的敏感性降低,最终发展为铂类耐药性。该病的治疗难度大,预后往往较差(Marchetti等,2021;Porter和Matulonis,2023)。克服卵巢癌的化疗耐药性是一个紧迫而重要的临床问题。炎症反应主要分为急性和慢性两类。急性炎症主要发生在物理、化学或急性感染情况下,是机体的早期防御机制,通常很快可自行缓解(Yang等,2023)。慢性炎症则发生在慢性感染或自身免疫性疾病中,机体正常的反馈调节无法阻止炎症,导致慢性炎症(Liu等,2022)。统计数据显示,全球约20%的恶性肿瘤是由慢性炎症引起的(Kennel et al., 2023; Venakteshaiah and Kumar, 2021; Haas et al., 2021),非甾体抗炎药物在临床上可以降低各类实体瘤的发病率和转移率,降低肿瘤引起的死亡率。慢性炎症被认为对癌症的发生、生长和进展有显著的影响。慢性炎症引发肿瘤发生、发展的机制多种多样,但往往与炎症为肿瘤提供的微环境有关。癌相关成纤维细胞(CAFs)作为癌症基质的重要组成部分,与炎症和肿瘤免疫微环境(TME)密切相关(Chen et al., 2021)。 CAFs 与 NF- κ B、PI3K-Akt、IL6-JAK-STAT3 和 TGF- β 等各种信号通路相互作用,帮助形成和维持 TME,影响 ECM 结构并产生免疫治疗耐药性(Mao et al., 2021; Wu F. et al., 2021)。此外,活化的 CAFs 促进单核细胞粘附并驱动巨噬细胞向 M2 极化方向分化,进一步抑制 TME 中的免疫反应(Lavie et al., 2022; Galbo et al., 2021)。因此,分析与炎症相关的基因与肿瘤免疫环境之间的关系有助于
Zhang,P.,G。Chen,W。Ma,Y。Ming和Z. Wu,2021年:理想化和全面的气候模型中强大的大气河对全球变暖的反应。 J. 气候,34,7717–7734,https://doi.org/10.1175/jcli-d-20-1005.1。Zhang,P.,G。Chen,W。Ma,Y。Ming和Z. Wu,2021年:理想化和全面的气候模型中强大的大气河对全球变暖的反应。J.气候,34,7717–7734,https://doi.org/10.1175/jcli-d-20-1005.1。
工作论文 — “利用高斯过程对混合频率数据进行即时预测”,与 Niko Hauzenberger(思克莱德大学)、Massimiliano Marcellino(博科尼大学)和 Michael Pfar-rhofer(华盛顿大学)合作,提交给《计量经济学杂志》,arXiv:2402.10574。 — “欧元区的货币政策和收入与财富的联合分配”,arXiv:2304.14264。 — “中央银行信息冲击的国际影响”,与 Michael Pfarrhofer(华盛顿大学)合作,《宏观经济动力学 R&R》,arXiv:1912.03158。 — “欧元区宏观经济波动的影响”,与 Maximilian B¨ock(博科尼大学)、Niko Hauzenberger(思克莱德大学)、Michael Pfarrhofer(WU)和 Gre- gor Zens(博科尼大学)合作,欧洲系统性风险委员会 (ESRB) 工作报告 80,2018 年。— “在面对不平等的类别分布的情况下使用机器学习技术预测信用违约概率”,arXiv:1907.12996。
1 Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Berlin, Germany, 2 Department of Biology, Chemistry, and Pharmacy, Freie Universita¨t Berlin, Berlin, Germany, 3 Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Wu¨rzburg, Germany, 4 Core facility for metabolomics and small molecules mass spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany, 5 Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany, 6 CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France, 7 Aix Marseille Universite课,Inserm,SSA,MCT,Marseille,法国,8显微镜核心设施,Max Planck感染生物学研究所,柏林,德国,9医学院,武兹堡大学,德国武兹堡,德国,德国,德国
